HÜSEYİN DEMİR
 A life dedicated to problem composing and problem solving

This collection is compiled by
Ali Sinan Sertöz
sertoz@bilkent.edu.tr

Chapter 0. Preface iii
Chapter 1. Advanced Problems for MONTHLY 1
Chapter 2. Solutions of Advanced Problem for MONTHLY 5
Chapter 3. Elementary Problems for MONTHLY 17
Chapter 4. Solutions of Elementary Problem for MONTHLY 25
Chapter 5. Contributed Solutions to MONTHLY problems 65
Chapter 6. Proposals for Mathematics Magazine 73
Chapter 7. Solutions of Proposals 91
Chapter 8. Quickies for Mathematics Magazine 175
Chapter 9. Solutions of Quickies 179
Chapter 10. Contributed Solutions to Mathematics Magazine 183

1916-1995
Hüseyin Demir was a prolific problem composer who composed more than one hundred problems in his lifetime. He almost exclusively published in American Mathematical Monthly and in Mathematics Magazine.

His first publication appeared in 1943 in American Mathematical Monthly as "Advanced Problem 4102".

His last publication was in 1993 in Mathematics Magazine as the "Solution by the proposer" to his "Proposal 1405" which had appeared the year before.

I have used JSTOR's search engine to find publications of Hüseyin Demir in American Mathematical Monthly and Mathematics Magazine. Here I not only collected problems proposed by Demir but also the solutions supplied to his problems. In addition to these I also collected published solutions contributed by Demir to other composers's problems.

Hüseyin Demir was an alumnus of Darüşşafaka High School.
Darüsssafaka Cemiyeti was established in 1863 by five young Ottoman gentlemen whose ages were 38, 35, 31, 27 and 24. Sultan Abdülaziz who gave his consent for this establishment was also only 33 years old at the time.

Darüşsafaka is the first non-governmental educational organization in Turkish history. During the last decades of the Empire most muslim Ottoman men who were recruited for the army were lost as the result of
long and frequent battles. Thus most families were losing their fathers and their children were then forced to leave their education and start working at Kapalıçarşı.

On the other hand non-muslim Ottoman children did not suffer from this mishap. Hence the motto of Darüsşsafaka Cemiyeti, at that time was and still today is "Equal opportunity in education". Children who have lost one of their parents and are financially not able to pursue a proper education are accepted to Darüşşafaka after a competitive entrance exam. Darüsssafaka is a boarding high school and all the daily and educational expenses of students are provided by Darüşşafaka Cemiyeti which is supported to this day by donations. Today Darüşşafaka is recognized as one of the best educational establishments of Turkey.

Salih Zeki, another of our famous mathematicians, was an 1882 alumnus of Darüşşafaka. Hüseyin Demir is 1935 alumnus and according to his telling he read books of Salih Zeki when he was in school. While he was a middle school student at Darüşşafaka he came up with a novel proof of Pythagoras theorem, which is in the genre of "proof without words" and I am reproducing it here.

I found it my responsibility to my school to compile this collection of Hüseyin Demir's problems. To continue the tradition under which we grew, this collection is meant to be used freely for educational purposes.

Ali Sinan Sertöz

1973 alumnus of Darüşşafaka sertoz@bilkent.edu.tr
December 2021 Ankara

1 Advanced Problems for MONTHLY

List of Advanced Problems:

[1] Advanced Problem 4102, American Mathematical Monthly, 50, (1943), 638.
[2] Advanced Problem 4125, American Mathematical Monthly, 51, (1944), 252.
[3] Advanced Problem 4134, American Mathematical Monthly, 51, (1944), 475.
[4] Advanced Problem 4193, American Mathematical Monthly, 53, (1946), 160.
[5] Advanced Problem 4215, American Mathematical Monthly, 53, (1946), 470.
[6] Advanced Problem 4679, American Mathematical Monthly, 63, (1956), 191.
[7] Advanced Problem 4695, American Mathematical Monthly, 63, (1956), 426.
[8] Advanced Problem 4710, American Mathematical Monthly, 63, (1956), 669.
[9] Advanced Problem 4735, American Mathematical Monthly, 64, (1957), 277.
[10] Advanced Problem 4818, American Mathematical Monthly, 65, (1958), 779.

Advanced Problem 4102, American Mathematical Monthly, 50, (1943), 638.

4102. Proposed by Hilseyin Demir, Columbia University

Let O and I be respectively the circumcenter and incenter of a given triangle $A B C$. Let A_{0}, B_{0}, C_{0} be points taken respectively on $B C, C A, A B$ so that the sums of the algebraic distances of each point to two other sides are equal to a given length l. Prove synthetically that: (1) The points A_{0}, B_{0}, C_{0} are collinear; (2) The sum of distances to the sides of $A B C$ of points on $A_{0} B_{0} C_{0}$ is the constant l; (3) the line $A_{0} B_{0} C_{0}$ is perpendicular to the line $O I$.

Advanced Problem 4125, American Mathematical Monthly, 51, (1944), 252.

4125. Proposed by Hiseyin Demir, Columbia University

Prove that
$\left|\begin{array}{cccccc}\sin \theta_{1} & -e^{-i \theta_{1}} & 0 & 0 & \cdots & 0 \\ \sin \theta_{2} & e^{i \theta_{2}} & -e^{-i \theta_{2}} & 0 & \cdots & 0 \\ \sin \theta_{3} & 0 & e^{i \theta_{2}} & -e^{-i \theta_{2}} & \cdots & 0 \\ \cdot & \cdot & \cdot & \vdots & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & \dot{c} \\ \sin \theta_{n} & 0 & 0 & 0 & \cdots & \dot{0} \\ \dot{0} & e^{i \theta_{n}}\end{array}\right|=\sin \left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)$.

Advanced Problem 4134, American Mathematical Monthly, 51, (1944), 475.
4134. Proposed by Hiiseyin Demir, Columbia University

Let $C_{1}^{1} C_{2}^{1} C_{3}^{1}$ be the inscribed triangle of a reference triangle $A_{1} A_{2} A_{3}$, and $C_{1}^{2} C_{2}^{2} C_{3}^{2}$ be that of $C_{1}^{1} C_{2}^{1} C_{3}^{1}$, and so on, obtaining a triangle $C_{1}^{n} C_{2}^{n} C_{3}^{n}$ after n steps. Denoting the angles of the nth triangle by C_{i}^{n}, prove that

1. $\left(C_{i}^{n}-\pi / 3\right) /\left(A_{i}-\pi / 3\right)=(-1)^{n} 2^{-n}$.
2. The limit of the direction of $C_{2}^{n} C_{3}^{n}$ as $n \rightarrow \infty$, is the direction of one of the trisectrices of the angle ($A_{2} A_{3}, C_{2}^{1} C_{3}^{1}$), and from that observe a method of trisecting an angle by ruler and compass in infinitely many steps.
3. Proposed by Hüseyin Demir, Columbia University

If on the sides of an arbitrary pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$ the triangles $B_{i} A_{i+2} A_{i+3}$ (with indices reduced mod 5) are constructed such that $B_{i} A_{i+2} \| A_{i} A_{i+1}$, and $B_{i} A_{i+3} \| A_{i} A_{i+4}$, then the lines $A_{i} B_{i}$ concur in a point C.

Advanced Problem 4215, American Mathematical Monthly, 53, (1946), 470.
4215. Proposed by Hüseyin Demir, Columbia University

Prove that the Hermite polynomials defined as follows

$$
H_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2} / 2}
$$

have the property

$$
n!\sum_{p=0}^{n} \frac{H_{p}^{2}(x)}{p!}=H_{n+1}^{2}(x)-H_{n}(x) H_{n+2}(x)
$$

Advanced Problem 4679, American Mathematical Monthly, 63, (1956), 191.

4679. Proposed by Hiuseyin Demir, Zonguldak, Turkey

If $A_{1} A_{2} A_{3} A_{4} A_{5}$ is a cyclic pentagon and if $\Omega_{i j}$ denotes the orthopole of the line $A_{i} A_{j}$ with respect to the triangle formed by the remaining three vertices, then prove that the ten points $\Omega_{i j}$ all lie on a circle.

Advanced Problem 4695, American Mathematical Monthly, 63, (1956), 426.
4695. Proposed by Hüseyin Demir, Zonguldak, Turkey

Prove that if in a cyclic quadrangle the Simson line of one vertex with respect to the triangle formed by the other three is perpendicular to the Euler line of that triangle, then the same property holds for the other vertices of the quadrangle.

Advanced Problem 4710, American Mathematical Monthly, 63, (1956), 669.
4710. Proposed by Hüseyin Demir, Zonguldak, Turkey

Prove that if in a complete quadrangle inscribed in a circle (O) one pair of opposite sides are isotomic lines with respect to a triangle inscribed in (O), then the remaining pairs of opposite sides are also isotomic lines with respect to the same triangle.

Advanced Problem 4735, American Mathematical Monthly, 64, (1957), 277.

4735. Proposed by Hiuseyin Demir, Zonguldak, Turkey

Let $A_{1} A_{2} A_{3} A_{4} A_{5}$ be a simple 5-point plane figure, and let d be any line in the plane of the figure. Let the common point of the line d and the side a_{i} opposite to A_{i} be denoted by B_{i}, and the common point of the lines $A_{i} B_{i+1}, B_{i} A_{i+1}$ by C_{i+3}. Then the five lines $A_{i} C_{i}$ have a point D in common.

Advanced Problem 4818, American Mathematical Monthly, 65, (1958), 779.
4818. Proposed by Hiuseyin Demir, Zonguldak, Turkey

Let d_{i} be the sides of a complete quadrilateral, and $A_{i j}$ be the vertex on d_{i}, d_{j}. Let t_{i} be the triangle formed by the sides other than d_{i}, and $\left(O_{i}\right)$ denote the circumcircle of t_{i}. Denote the Simson line of a point S_{i} of $\left(O_{i}\right)$ with respect to t_{i} by D_{i}.

Then prove that, if D_{i} and d_{i} are parallel for all i, (1) the line $S_{i} O_{p}$ passes through the vertex $A_{q r}(i, p \neq q, r)$, and (2) the points S_{i} all lie on the Miquel circle (O).

Solution to Problem 4102:
American Mathematical Monthly, 52, (1945), 103-104.

SOLUTIONS

A Special Triangle Transversal

4102 [1943, 638]. Proposed by Hiseyin Demir, Columbia University
Let O and I be respectively the circumcenter and incenter of a given triangle $A B C$. Let A_{0}, B_{0}, C_{0} be points taken respectively on $B C, C A, A B$ so that the sums of the algebraic distances of each point to two other sides are equal to a given length l. Prove synthetically that: (1) The points A_{0}, B_{0}, C_{0} are collinear; (2) The sum of distances to the sides of $A B C$ of points on $A_{0} B_{0} C_{0}$ is the constant l; (3) the line $A_{0} B_{0} C_{0}$ is perpendicular to the line $O I$.

Solution by the Proposer. (1) The locus of points whose sum of distances to the sides $C A, A B$ is l, is a straight line passing through A_{0}, and perpendicular to $A I$. Let B_{c}, C_{b} be points where this locus cuts $C A, A B$. Similarly we consider two other loci corresponding to B_{0}, C_{0}. Let $A^{\prime} B^{\prime} C^{\prime}$ be the triangle formed by these three loci. We shall prove that the last triangle is in perspective with $A B C$, I being the center of perspective. This is obvious, because since A^{\prime} is the intersection of two loci, its distances to $C A, A B$ are equal, that is, A^{\prime} belongs to $A I$. Similarly B^{\prime}, C^{\prime} belong respectively to $B I, C I$. Thus applying Desargue's theorem we have collinearity of A_{0}, B_{0}, C_{0}.
(2) Let M be a point of $A_{0} B_{0} C_{0}$ with x, y, z its distances to $B C, C A, A B$. We shall prove that $x+y+z=l$. Consider the locus of points with $y+z=C$ st. This locus $M Q$ (see figure) is parallel to $B_{c} C_{b}$, and $Q Q_{1}=y+z$. Now, C_{b}, A_{b} having equal distances l to $C A$ (see (1)) what we have to prove is that $Q Q_{2}=x$. Draw $M P$ parallel to $B C$, then $x=M X=P P_{1}$. Since $A^{\prime} A_{b}$ is the bisector of $A_{0} A_{b} C_{b}$, we have $x=P P_{1}=P P_{2}$. It remains to prove that $Q P \| C_{b} A_{b}$. This is true because the two triangles $Q M P, C_{b} A_{0} A_{b}$ have two sides parallel, namely $Q M, C_{b} A_{0}$ and $M P, A_{0} A_{b}$ and they are in perspective, with C_{0} as center of perspective. Therefore their third sides $Q P, C_{b} A_{b}$ must be parallel, that is $x=P P_{2}=Q Q_{2}$.
(3) We shall prove two things: (a) $-A_{0} B_{0} C_{0}$ is the radical axis of circles $(A B C)$ and $\left(A^{\prime} B^{\prime} C^{\prime}\right)$. (b)-The center O^{\prime} of $\left(A^{\prime} B^{\prime} C^{\prime}\right)$ lies on $O I$, thus property (2) will be proved.
(a)-For, observe the relation $\overline{C_{0} A} \cdot \overline{0_{0} B}=\overline{C_{0} A^{\prime}} \cdot \overline{C_{0} B^{\prime}}$. This is true because the quadrilateral $A B B^{\prime} A^{\prime}$ is cyclic. (Note the equality of angles $A_{b} B^{\prime} B=A^{\prime} A B=\frac{1}{2} A$). Thus C_{0} has equal powers with respect to the two circles. A similar property holds for A_{0}, B_{0}.
(b)-To prove that O^{\prime} belongs to $O I$ we shall remark that the locus of O^{\prime} is a straight line when $A^{\prime} B^{\prime} C^{\prime}$, whose sides are perpendicular to $A I, B I, C I$, varies, and since $A^{\prime} B^{\prime} C^{\prime}$ is always in perspective with $A B C$, with I the center of perspective, O^{\prime} will describe a straight line passing through I. It also passes through O. For, let A^{\prime} be taken at the point where $A I$ meets the circle $(A B C)$. It is easy to see that B^{\prime}, C^{\prime} will be similar points on the same circle. Thus O^{\prime}, the center of $\left(A^{\prime} B^{\prime} C^{\prime}\right)$, coincides with O, the center of $(A B C)$. Therefore the radical axis $A_{0} B_{0} C_{0}$ of $(A B C)$ and $\left(A^{\prime} B^{\prime} C^{\prime}\right)$ is perpendicular to the line $O I$ passing through the centers O and O^{\prime}.

Editorial Note. The first two theorems follow from similar triangles. The
case of an isosceles $A B C$ may be discarded. For, if say the sides $A B, A C$ have equal lengths, then in consequence of symmetry about $A I$ the same is true for $A B_{0}, A C_{0}, B_{0}$ and C_{0} being respectively on $A C$ and $A B$. It then follows that $B_{0} C_{0}$ is perpendicular to $O I$; the converse is true as well as parts (1) and (2), but A_{0} has an exceptional position. The points A_{0}, B_{0}, C_{0} are uniquely determined by the given constant l. The distances x_{b}, y_{b}, z_{b} for B_{0} are such that $y_{b}=0, x_{b}+z_{b}=l$, etc. Let P be a point on the straight line of $C_{0} B_{0}$ and let it divide this segment in the ratio $\lambda: 1$. Then we have

$$
(\lambda+1) x=x_{c}+\lambda x_{b}, \quad(\lambda+1) y=y_{c}, \quad(\lambda+1) z=\lambda z_{b},
$$

where x, y, z are the distances for P. By addition we have

$$
(\lambda+1)(x+y+z)=\left(x_{c}+y_{o}\right)+\lambda\left(x_{b}+z_{b}\right)=(\lambda+1) l ;
$$

and, if P is a finite point $x+y+z=l$. The straight line $C_{0} B_{0}$ meets $B C$ in a finite point for which $x_{a}=0$ and $y_{a}+z_{a}=l$; hence this point is A_{0}. The two straight lines $A_{0} B_{0} C_{0}$ for different values of l are parallel; for, if they meet in a finite point, this point would have the sum of its distances equal to two different values. If P is a point not on $B_{0} C_{0}$ the line through it parallel to the latter meets the two sides in points different from B_{0} and C_{0}. Hence the sum of its distances must be different from l; and this proves that the locus of points for a given l is the straight line $A_{0} B_{0} C_{0}$ for that value of l.

In the special case where $A^{\prime} B^{\prime} C^{\prime}$ is inscribed in (O) the polar of C_{0} passes through $\left(A A^{\prime}, B B^{\prime}\right)=I$, similarly, the polar of B_{0} passes through I. Hence the polar $B_{0} C_{0}$ of I is perpendicular to $O I$.

Solution to Problem 4125:
American Mathematical Monthly, 52, (1945), 523.

Trigonometric Determinants

4125 [1944, 352]. Proposed by Hiiseyin Demir, Columbia University
Prove that
$\left|\begin{array}{cccccc}\sin \theta_{1} & -e^{-i \theta_{1}} & 0 & 0 & \cdots & 0 \\ \sin \theta_{2} & e^{i \theta_{2}} & -e^{-i \theta_{2}} & 0 & \cdots & 0 \\ \sin \theta_{3} & 0 & e^{i \theta_{2}} & -e^{-i \theta_{2}} & \cdots & 0 \\ \vdots & \vdots & . & \vdots & 0 & 0 \\ \sin \theta_{n} & 0 & 0 & 0 & \cdots & \vdots \\ \dot{0} & \cdots & e^{i \theta_{n}}\end{array}\right|=\sin \left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)$.

Solution by Mary L. Boas, Tufts College. Put each $\sin \theta=\left(e^{i \theta}-e^{-i \theta}\right) / 2 i$ and remove the factor $1 / 2 i$ outside the determinant. Subtract from each element of the first column the sum of all the other elements in its row. The determinant then becomes

$$
\frac{1}{2 i}\left|\begin{array}{ccccc}
e^{i \theta_{1}} & -e^{-i \theta_{1}} & 0 & \cdots & 0 \\
0 & e^{i \theta_{2}} & -e^{-i \theta_{2}} & \cdots & 0 \\
\vdots & \vdots & \vdots & 0 & 0 \\
\dot{0} & \dot{0} & 0 & \cdots & e^{i \theta_{n-1}} \\
-e^{-i \theta_{n}} & 0 & 0 & \cdots & e^{-i \theta_{n-1}} \\
0 & e^{i \theta_{n}}
\end{array}\right|
$$

Expand by elements of the first column. The minor of $e^{i \theta_{1}}$ is $e^{i\left(\theta_{2}+\theta_{3}+\cdots+\theta_{n}\right)}$ since all elements below the main diagonal of this minor are zero. The minor of $-e^{-i \theta_{n}}$ is $(-1)^{n-1} e^{-i\left(\theta_{1}+\theta_{2}+\cdots+\theta_{n-1}\right)}$ since all elements above its main diagonal are zero. Therefore the determinant equals

$$
\frac{1}{2 i}\left[e^{i\left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)}-e^{-i\left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)}\right]=\sin \left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)
$$

Solved also by E. F. Allen, Murray Barbour, C. B. Barker, Jr., Shepard Bartnoff, R. P. Boas, Jr., Mrs. R. C. Buck, Howard Eves, Clifford Gardner, P. C. Hammer, R. Hamming, J. F. Hofmann, L. M. Kelly, E. Lukacs, Norman Miller, Henry Nelson, Ivan Niven, H. N. Shapiro, Robert Steinberg, R. H. Wilson, Jr., and the proposer.

Editorial Note. About half of the solutions used induction proofs and about the same number used simple determinant transformations without induction. Hammer considered the transformation of the determinant and its value by replacing θ_{j} by $\pi / 2-\theta_{j}$ which gives after reduction a determinant with $a_{j 1}=\cos \theta_{i}$ in the first column and the principal diagonal $\cos \theta_{1}, e^{-i \theta_{2}}, e^{-i \theta_{3}}, \cdots$ and the parallel above it $e^{i \theta_{1}}, e^{i \theta_{2}}, e^{i \theta_{3}}, \cdots$ with zeros in the remaining places. He found for the value of the determinant $\cos \sum \theta_{j}$ if n is odd, and $-i \sin \sum \theta_{j}$ if n is even. A simpler procedure is to make the same change in the first column but to alter the principal diagonal to $\cos \theta_{1},-e^{i \theta_{2}},-e^{i \theta_{3}}, \cdots,-e^{i \theta_{n}}$ and leave the rest of the original determinant unaltered. The value of this determinant is the same as that for Hammer's determinant.

Solution to Problem 4134:
American Mathematical Monthly, 52, (1945), 587.

Angle Trisection

4134 [1944, 475]. Proposed by Hïseyin Demir, Columbia University

Let $C_{1}^{1} C_{2}^{1} C_{3}^{1}$ be the inscribed triangle of a reference triangle $A_{1} A_{2} A_{3}$, and $C_{1}^{2} C_{2}^{2} C_{3}^{2}$ be that of $C_{1}^{1} C_{2}^{1} C_{3}^{1}$, and so on, obtaining a triangle $C_{1}^{n} C_{2}^{n} C_{3}^{n}$ after n steps. Denoting the angles of the nth triangle by C_{i}^{n}, prove that

1. $\left(C_{i}^{n}-\pi / 3\right)\left(A_{i}-\pi / 3\right)=(-1)^{n} 2^{-n}$.
2. The limit of the direction of $C_{2}^{n} C_{3}^{n}$ as $n \rightarrow \infty$, is the direction of one of the trisectrices of the angle $\left(A_{2} A_{3}, C_{2}^{1} C_{3}^{1}\right)$, and from that observe a method of trisecting an angle by ruler and compass in infinitely many steps.

Solution by Howard Eves, College of Puget Sound. 1. Designating the incenter of $A_{1} A_{2} A_{3}$ by I we have $C_{2}^{1} I C_{3}^{1}=2 C_{1}^{1}$. Therefore $A_{1}+2 C_{1}^{1}=\pi$. Similarly, $A_{i}+2 C_{i}^{1}$ $=\pi$, or

$$
\left(C_{i}^{1}-\pi / 3\right) /\left(A_{i}-\pi / 3\right)=-2^{-1}
$$

By the same process

$$
\left(C_{i}^{j}-\pi / 3\right) /\left(C_{i}^{j-1}-\pi / 3\right)=-2^{-1} \quad j=2, \cdots, n .
$$

By multiplication we then get

$$
\left(C_{i}^{n}-\pi / 3\right) /\left(A_{i}-\pi / 3\right)=(-1)^{n} 2^{-n} .
$$

2. Now
$\lim _{n \rightarrow \infty}\left[\right.$ angle $\left.\left(A_{2} A_{3}, C_{2}^{n} C_{3}^{n}\right)\right]=\sum_{n=1}^{\infty}$ angle $\left(C_{1}^{2 n-2} C_{2}^{2 n-2}, C_{1}^{2 n} C_{2}^{2 n}\right), \quad$ where $C_{i}^{0} \equiv A_{i}$

$$
\begin{aligned}
& =\sum_{1}^{\infty}\left(C_{3}^{2 n-1}-C_{1}^{2 n}\right) \\
& =\sum_{1}^{\infty}\left[\left(C_{3}^{2 n-1}-\pi / 3\right)-\left(C_{1}^{2 n}-\pi / 3\right)\right] \\
& =\sum_{1}^{\infty}\left[-2^{-2 n+1}\left(A_{3}-\pi / 3\right)-2^{-2 n}\left(A_{1}-\pi / 3\right)\right],
\end{aligned}
$$

by the relations of part 1 above. The infinite sum on the right reduces to

$$
\begin{aligned}
\sum_{1}^{\infty}\left[\pi-A_{1}-2 A_{3}\right] 2^{-2 n} & =\left(A_{2}-A_{3}\right) \sum_{1}^{\infty} 2^{-2 n}=\frac{1}{3}\left(A_{2}-A_{3}\right)=\frac{2}{3}\left(\frac{A_{2}-A_{3}}{2}\right) ; \\
& =\left(\frac{2}{3}\right)\left[\frac{1}{2}\left(A_{2}-\pi / 3\right)-\frac{1}{2}\left(A_{3}-\pi / 3\right)\right] \\
& =\left(\frac{2}{3}\right)\left[-\left(C_{2}^{1}-\pi / 3\right)+\left(C_{3}^{1}-\pi / 3\right)\right] \\
& =\left(\frac{2}{3}\right)\left(C_{3}^{1}-C_{2}^{1}\right)=\left(\frac{2}{3}\right) \text { angle }\left(A_{2} A_{3}, C_{2}^{1} C_{3}^{1}\right) .
\end{aligned}
$$

This establishes part 2. The method suggested here for asymptotically obtaining one of the angle trisectors of a given acute angle $\left(A_{2} A_{3}, C_{2}^{1} C_{3}^{1}\right)$ is apparent. It is
needless to say, however, that there are many better euclidean asymptotic constructions for trisecting an angle.

Solved also by the proposer.
Editorial Note. Below are some references to this Monthly regarding approximate methods of angle trisection with limits for the error:

1932, 478, Angle Division, article by E. C. Kennedy; 2972 [1925, 95]; 3114 [1925, 483]; 3522 [1933, 303]; 3563 [1934, 113]; The method of Pappus using conics 3490 [1932, 243].

Solution to Problem 4193:
American Mathematical Monthly, 54, (1947), 349.

Concurrent Lines in a Pentagon

4193 [1946, 160]. Proposed by Hüseyin Demir, Columbia University
If on the sides of an arbitrary pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$ the triangles $B_{i} A_{i+2} A_{i+3}$ (with indices reduced mod 5) are constructed such that $B_{i} A_{i+2} \| A_{i} A_{i+1}$, and $B_{i} A_{i+3} \| A_{i} A_{i+4}$, then the lines $A_{i} B_{i}$ concur in a point C.

Solution by J. W. Clawson, Ursinus College, Collegeville, Pennsylvania. Take the triangle $A_{1} A_{2} A_{4}$ as the triangle of reference for a system of homogeneous trilinear coördinates. Let A_{1} be (1, 0,0$), A_{2}(0,1,0),, A_{3}(d, e, f), A_{4}(0,0,1)$, $A_{5}(k, l, m)$.

Then the equations of the line through A_{3} parallel to $A_{1} A_{2}$ and of the line through A_{4} parallel to $A_{1} A_{5}$ are

$$
a f x+b f y-(a d+b e) z=0, \quad a l x+(b l+c m) y=0 .
$$

Thus B_{1} has the coördinates

$$
(b l+c m)(a d+b e), \quad-a l(a d+b \dot{e}), \quad a c f m ;
$$

and the equation of $A_{1} B_{1}$ is

$$
c f m y+l(a d+b e) z=0 .
$$

In the same way the equations of $A_{2} B_{2}$ and $A_{4} B_{4}$ are found to be

$$
c f m x+d(a k+b l) z=0, \quad l(a d+b e) x-d(a k+b l) y=0 .
$$

These three lines are easily seen to be concurrent in a point C which has the coördinates

$$
d(a k+b l), \quad l(a d+b e), \quad-c f m .
$$

Using the triangles $A_{1} A_{3} A_{4}$ and $A_{2} A_{4} A_{5}$ we can prove in the same way that $A_{3} B_{3}$ and $A_{5} B_{5}$ also pass through the point C.

Solved also by the Proposer.
Editorial Note. Clawson gave a second proof using the converse of Ceva's Theorem. The Proposer employed the pencils of lines $A_{3} B_{3}, A_{4} B_{4}$ formed when the side $A_{2} A_{3}$ rotates about A_{3}, other sides remaining fixed; since the correspondence between $A_{3} B_{3}$ and $A_{4} B_{4}$ is homographic, the locus of the intersection C of the tays $A_{3} B_{3}, A_{4} B_{4}$ is a conic; this conic decomposes into $A_{1} B_{1}$ and $A_{3} A_{4}$, thus giving the proof.

Solution to Problem 4215:
American Mathematical Monthly, 55, (1948), 34.

Hermite Polynomials

4215 [1946, 470]. Proposed by Hüseyin Demir, Columbia University
Prove that the Hermite polynomials defined as follows

$$
H_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2} / 2}
$$

have the property

$$
n!\sum_{p=0}^{n} \frac{H_{p}^{2}(x)}{p!}=H_{n+1}^{2}(x)-H_{n}(x) H_{n+2}(x)
$$

Solution by Hsien-yil Hsiu Yenching University, Peiping, China. In PolyaSzegö, Aufgaben und Lehrsätze II, pp. 294-295, Hermite polynomials are de-
fined as follows

$$
h_{n}(x)=\frac{1}{n!} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2} / 2},
$$

and satisfy the difference equation

$$
n h_{n}(x)=-x h_{n-1}(x)-h_{n-2}(x), \quad n=2,3, \cdots
$$

We notice that

$$
H_{n} \equiv H_{n}(x)=(-1)^{n} n!h_{n}(x)
$$

whence the difference equation is

$$
\begin{equation*}
H_{n}=x H_{n-1}-(n-1) H_{n-2}, \quad n=2,3, \cdots \tag{1}
\end{equation*}
$$

Upon eliminating x from this equation and the analogous equations for H_{n+1} and H_{n+2} we obtain immediately

$$
\begin{aligned}
H_{n+1}^{2}-H_{n} H_{n+2} & =n\left(H_{n}^{2}-H_{n+1} H_{n-1}\right)+H_{n}^{2} \\
& =n(n-1)\left(H_{n-1}^{2}-H_{n} H_{n-2}\right)+n H_{n-1}^{2}+H_{n}^{2} \\
& =\cdots \\
& =n!\left\{\left(H_{1}^{2}-H_{2} H_{0}\right)+\frac{1}{1!} H_{1}^{2}+\frac{1}{2!} H_{2}^{2}+\cdots+\frac{1}{n!} H_{n}^{2}\right\} \\
& =n!\sum_{p=0}^{n} H_{p}^{2} / p!,
\end{aligned}
$$

since $H_{1}^{2}-H_{2} H_{0}=1$.
Solved also by F. E. Cothran, A. B. Farnell, L. M. Kelly, Norman Miller, S. T. Parker, W. A. Pierce, W. H. Spragens, M. S. Webster, M. Wyman, Professor Otto Szász's class, and the Proposer.

Editorial Note. Several solvers mentioned that equation (1) of the above solution is found in Dunham Jackson, Fourier Series and Orthogonal Polynomials, p. 176, ff. The solution by members of Professor Szász's class in Orthogonal Developments proceeds from the (so-called) Christoffel's formula

$$
\sum_{p=0}^{n} \frac{H_{p}(x) H_{p}(y)}{p!}=\frac{H_{n+1}(x) H_{n}(y)-H_{n}(x) H_{n+1}(y)}{n!(x-y)}
$$

See Szegö, Orthogonal Polynomials, p. 102. Webster's solution employs the relation

$$
H_{m}(x) H_{n}(x)=n!\sum_{r=0}^{n}\binom{m}{n-r} \frac{H_{m-n+2 r}}{r!} \quad(m \geqq n)
$$

established by E. Feldheim, Journal of the London Mathematical Society, 1938, pp. 22-29.

Solution to Problem 4679:
American Mathematical Monthly, 63, (1956), 191.

Ten Concyclic Orthopoles

4679 [1956, 191]. Proposed by Hüseyin Demir, Zonguldak, Turkey
If $A_{1} A_{2} A_{3} A_{4} A_{5}$ is a cyclic pentagon and if $\Omega_{i j}$ denotes the orthopole of the line $A_{i} A_{j}$ with respect to the triangle formed by the remaining three vertices, then prove that the ten points $\Omega_{i j}$ all lie on a circle.

Solution by Chih-yi Wang, University of Minnesota. We make use of the following known

Theorem. If a line meets the circumcircle of a triangle, the Simson lines of the points of intersection with the circle meet in the orthopole of the line for the triangle. (See Court, College Geometry, 2nd ed., p. 289.)

Let the circumcircle $A_{1} A_{2} A_{3} A_{4} A_{5}$ be the unit circle, and the coordinates of A_{i} be $\left(\cos \theta_{i}, \sin \theta_{i}\right), i=1,2, \cdots, 5$. For definiteness let us find the coordinates of Ω_{12}. The equations of the Simson lines of A_{1} and of A_{2} are given by

$$
\begin{aligned}
& y-\frac{1}{2}\left(\sin \theta_{j}+\sin \theta_{3}+\sin \theta_{4}\right)=\frac{1}{2} \sin \left(\theta_{3}+\theta_{4}-\theta_{j}\right) \\
& \quad=\tan \frac{1}{2}\left(\theta_{3}+\theta_{4}+\theta_{5}-\theta_{j}\right)\left[x-\frac{1}{2}\left(\cos \theta_{3}+\cos \theta_{4}+\cos \theta_{j}\right)+\frac{1}{2} \cos \left(\theta_{3}+\theta_{4}-\theta_{j}\right)\right]
\end{aligned}
$$

for $j=1,2$. By solving the simultaneous equations we obtain

$$
\Omega_{12}=\left(\alpha+\frac{1}{2} \cos \left(\theta_{3}+\theta_{4}+\theta_{5}-\theta_{1}-\theta_{2}\right), \quad \beta+\frac{1}{2} \sin \left(\theta_{3}+\theta_{4}+\theta_{5}-\theta_{1}-\theta_{2}\right)\right),
$$ where $\alpha=\frac{1}{2} \sum \cos \theta_{k}, \beta=\frac{1}{2} \sum \sin \theta_{k}, k=1,2, \cdots, 5$. Since α and β are symmetric functions, by interchanging the subscripts we see readily that the ten points $\Omega_{i j}$ all lie on the circle of radius $\frac{1}{2}$ with center (α, β).

Also solved by J. W. Clawson, R. Goormaghtigh, O. J. Ramler, Sister M. Stephanie, and the proposer.

Editorial Note. Goormaghtigh gave this theorem in Mathesis, 1939, p. 312. Ramler gives an extension to the cyclic heptagon. If $\Omega_{i j k}$ denotes the Kantor point of a triangle $A_{i} A_{j} A_{k}$ with respect to the quadrangle formed by the remaining four vertices, then the thirty-five points $\Omega_{i j k}$ all lie on a circle one-half as large as the circumcircle of the heptagon.

Solution to Problem 4695:
American Mathematical Monthly, 64, (1957), 437.

Simson Line and Euler Line

4695 [1956, 426]. Proposed by Hiüseyin Demir, Zonguldak, Turkey
Prove that if in a cyclic quadrangle the Simson line of one vertex with respect to the triangle formed by the other three is perpendicular to the Euler line of that triangle, then the same property holds for the other vertices of the quadrangle.

Solution by Sister M. Stephanie, Georgian Court College, Lakewood, N. J. Using complex coordinates and taking the circle to be the unit circle, let the vertices of the quadrangle be $t_{1}, t_{2}, t_{3}, t_{4},\left|t_{i}\right|=1$. The Simson line of t_{1}, with respect to the triangle formed by t_{2}, t_{3}, t_{4}, has the equation

$$
2 t_{1} z-2 t_{1} s_{3} \bar{z}+s_{3}+t_{1} s_{2}-t_{1}^{3}-t_{1}^{2} s_{1}=0,
$$

where s_{1}, s_{2} and s_{3} are the elementary symmetric functions of t_{2}, t_{3} and t_{4}. The Euler line of triangle t_{2}, t_{3}, t_{4} has the equation $s_{2} z-s_{1} s_{3} \bar{z}=0$. If the two lines are perpendicular, one clinant is the negative of the other, whence $s_{3} / t_{1}=-s_{1} s_{3} / s_{2}$, or upon simplifying, $t_{1} t_{2}+t_{1} t_{3}+t_{1} t_{4}+t_{2} t_{3}+t_{2} t_{4}+t_{3} t_{4}=0$. The symmetry of this result guarantees that the property holds equally for any vertex.

Also solved by J. W. Clawson, G. W. Courter, R. Deaux, Beckham Martin, O. J. Ramler, Robert Sibson, Chih-yi Wang, and the proposer.
Solution to Problem 4710:
American Mathematical Monthly, 64, (1957), 601.

Isotomic Lines

4710 [1956, 669]. Proposed by Hiuseyin Demir, Zonguldak, Turkey
Prove that if in a complete quadrangle inscribed in a circle (O) one pair of opposite sides are isotomic lines with respect to a triangle inscribed in (O), then the remaining pairs of opposite sides are also isotomic lines with respect to the same triangle.
I. Solution by O. J. Ramler, Catholic University of America. Using a system of conjugate coordinates we take the circle (O) as the unit circle, and on it points whose vector coordinates are T_{1}, T_{2}, T_{3} as the inscribed triangle and $t_{1}, t_{2}, t_{3}, t_{4}$ as the inscribed complete quadrangle. Then the line $t_{2} t_{3}$ intersects the side $T_{2} T_{3}$ of the triangle in a point whose vector coordinate is

$$
z=\frac{T_{2} T_{3}\left(t_{2}+t_{3}\right)-\left(T_{2}+T_{3}\right) t_{2} t_{3}}{T_{2} T_{3}-t_{2} t_{3}}
$$

Similarly $t_{1} t_{4}$ meets side $T_{2} T_{3}$ where

$$
z^{\prime}=\frac{T_{2} T_{3}\left(t_{4}+t_{1}\right)-\left(T_{2}+T_{3}\right) t_{1} t_{4}}{T_{2} T_{3}-t_{1} t_{4}}
$$

The hypothesis implies $T_{3}-z=z^{\prime}-T_{2}$ which becomes, upon making proper substitutions and simplifying

$$
T_{2}^{2} T_{3}^{2}\left(T_{2}+T_{3}-s_{1}\right)+T_{2} T_{3} s_{3}-\left(T_{2}+T_{3}\right) s_{4}=0
$$

where s_{1}, s_{3}, s_{4} are elementary symmetric functions of $t_{1}, t_{2}, t_{3}, t_{4}$. The symmetry of this result establishes the proposed theorem.
II. Solution by Roland Deaux, Faculté Polytechnique, Mons, Belgium. Circle (O) may be replaced by any conic Γ. Let $A B C$ and $P Q R S$ be the triangle and the quadrangle inscribed in Γ. By virtue of Desargues' theorem, the four conics $\Gamma,(P Q, R S),(P R, Q S),(P S, Q R)$ determine on each side of $A B C$ four pairs of an involution. This involution, defined by Γ and the isotomic lines $P Q, R S$, has for double points the midpoint and the point at infinity of the side. Hence the property.

Also solved by J. W. Clawson, N. A. Court, R. Goormaghtigh, Josef Langr, and the proposer.

Solution to Problem 4735:
American Mathematical Monthly, 65, (1958), 128.

Concurrent Lines

4735 [1957, 277]. Proposed by Hiiseyin Demir, Zonguldak, Turkey
Let $A_{1} A_{2} A_{3} A_{4} A_{5}$ be a simple 5 -point plane figure, and let d be any line in the plane of the figure. Let the common point of the line d and the side a_{i} opposite to A_{i} be denoted by B_{i}, and the common point of the lines $A_{i} B_{i+1}, B_{i} A_{i+1}$ by C_{i+3}. Then the five lines $A_{i} C_{i}$ have a point D in common.

Solution by E. J. F. Primrose, The University, Leicester, England. There is a unique polarity P for which each A_{i} is the pole of the opposite side a_{i} (Coxeter, The Real Projective Plane, 5.65). We consider the 4 -point $A_{1} C_{1} B_{3} B_{4}$. The pole of $A_{1} B_{3}$ for P is A_{3}, so $A_{1} B_{3}$ and $C_{1} B_{4}$ are conjugate lines, and similarly $A_{1} B_{4}$ and $C_{1} B_{3}$ are conjugate lines. By the dual of Hesse's theorem (Coxeter, 5.55), $A_{1} C_{1}$ and $B_{3} B_{4}$ are conjugate lines, so $A_{1} C_{1}$ passes through D, the pole of d for P. By a similar argument, all the lines $A_{i} C_{i}$ pass through D.

Also solved by W. B. Carver, J. W. Clawson, R. Deaux, and the proposer.
Solution to Problem 4818:
American Mathematical Monthly, 66, (1959), 732.

A Property of the Miquel Circle of a Complete Quadrilateral

4818 [1958, 779]. Proposed by Hïseyin Demir, Zonguldak, Turkey
Let d_{i} be the sides of a complete quadrilateral, and $A_{i j}$ be the vertex on d_{i}, d_{j}. Let t_{i} be the triangle formed by the sides other than d_{i}, and $\left(O_{i}\right)$ denote the circumcircle of t_{i}. Denote the Simson line of a point S_{i} of (O_{i}) with respect to t_{i} by D_{i}.

Then prove that, if D_{i} and d_{i} are parallel for all i, (1) the line $S_{i} O_{p}$ passes through the vertex $A_{q r}(i, p \neq q, r)$, and (2) the points S_{i} all lie on the Miquel circle (O).

Solution by the proposer. (1) Let the projections of S_{i} and O_{p} on d_{r} be denoted by $U_{i r}, V_{p r}$. Then, using directed angles, we have

$$
\begin{aligned}
\Varangle V_{p r} O_{p} A_{q r} & =\Varangle A_{i r} A_{q i} A_{q r} & & \text { (from the circle } \left.\left(O_{p}\right)\right), \\
& =\Varangle U_{i r} U_{i q} A_{q r} & & \text { (since } \left.D_{i} \text { is parallel to } d_{i}\right), \\
& =\Varangle U_{i r} S_{i} A_{q r} . & & \text { (from the circle } \left.S_{i} U_{i r} A_{q r} U_{i q}\right) .
\end{aligned}
$$

Now, since $O_{p} V_{p r}$ is parallel to $S_{i} U_{i r}$, we get the required collinearity of S_{i}, $O_{p}, A_{q r}$.
(2) Since the line of centers $O_{p} O_{q}$ is perpendicular to the radical axis $F A_{p q}$, where F is the Miquel point, we have successively

$$
\begin{aligned}
\Varangle O_{p} O_{r} O_{q} & =\Varangle A_{q i} F A_{p i}, & & \\
& =\Varangle A_{q r} A_{p q} A_{p i} & & \text { (from the circle } \left.\left(O_{r}\right)\right), \\
& =\Varangle A_{q r} A_{p q} A_{p r}, & & \\
& =\Varangle A_{q r} S_{i} A_{p r} & & \text { (from the circle } \left.\left(O_{i}\right)\right), \\
& =\Varangle O_{p} S_{i} O_{q}, & & \text { (from property (1)), }
\end{aligned}
$$

and S_{i} lies on the Miquel circle (O).
Also solved by A. E. Landry.

3 Elementary Problems for MONTHLY

List of Elementary Problems:

[1] Elementary Problem 1134, American Mathematical Monthly, 61, (1954), 568.
[2] Elementary Problem 1160, American Mathematical Monthly, 62, (1955), 182.
[3] Elementary Problem 1197, American Mathematical Monthly, 63, (1956), 39.
[4] Elementary Problem 1209, American Mathematical Monthly, 63, (1956), 186.
[5] Elementary Problem 1217, American Mathematical Monthly, 63, (1956), 342.
[6] Elementary Problem 1778, American Mathematical Monthly, 72, (1965), 420.
[7] Elementary Problem 1779, American Mathematical Monthly, 72, (1965), 420.
[8] Elementary Problem 1877, American Mathematical Monthly, 73, (1966), 410.
[9] Elementary Problem 1878, American Mathematical Monthly, 73, (1966), 410.
[10] Elementary Problem 2100, American Mathematical Monthly, 75, (1968), 670.
[11] Elementary Problem 2101, American Mathematical Monthly, 75, (1968), 670.
[12] Elementary Problem 2109, American Mathematical Monthly, 75, (1968), 780.
[13] Elementary Problem 2110, American Mathematical Monthly, 75, (1968), 780.
[14] Elementary Problem 2124, American Mathematical Monthly, 75, (1968), 899.
[15] Elementary Problem 2160, American Mathematical Monthly, 76, (1969), 300.
[16] Elementary Problem 2213, American Mathematical Monthly, 77, (1970), 79.
[17] Elementary Problem 2311, American Mathematical Monthly, 78, (1971), 793.
[18] Elementary Problem 2312, American Mathematical Monthly, 78, (1971), 793.
[19] Elementary Problem 2363, American Mathematical Monthly, 79, (1972), 662.
[20] Elementary Problem 2462, American Mathematical Monthly, 81, (1974), 281.
[21] Elementary Problem 2625, American Mathematical Monthly, 83, (1976), 812.
[22] Elementary Problem 3135, American Mathematical Monthly, 93, (1986), 215.
[23] Elementary Problem 3164, American Mathematical Monthly, 93, (1986), 566.
[24] Elementary Problem 3422, American Mathematical Monthly, 98, (1991), 158.
[25] Elementary Problem 3469, American Mathematical Monthly, 98, (1991), 955.

Elementary Problem 1134, American Mathematical Monthly, 61, (1954), 568.

E 1134. Proposed by Hiuseyin Demir, Zonguldak, Turkey Prove that a square integer is not a perfect number.

Elementary Problem 1160, American Mathematical Monthly, 62, (1955), 182.
E 1160. Proposed by Hiiseyin Demir, Zonguldak, Turkey
Prove that in a complete quadrilateral the isotomic line of any side with respect to the triangle formed by the other three is parallel to the Newton line of the quadrilateral.

Elementary Problem 1197, American Mathematical Monthly, 63, (1956), 39.
E 1197. Proposed by Hïseyin Demir, Zonguldak, Turkey
Let $A B C$ be a right triangle and $C H$ the altitude on the hypotenuse $A B$. Show that the sum of the radii of the inscribed circles of triangles $A B C, H C A$, $H C B$ is equal to $C H$.

Elementary Problem 1209, American Mathematical Monthly, 63, (1956), 186.

E 1209. Proposed by Huiseyin Demir, Zonguldak, Turkey

Let $A B C$ be any triangle and (I) its incircle. Let (I) touch $B C, C A, A B$ at D, E, F, and intersect the cevians $B E, C F$ at E^{\prime}, F^{\prime} respectively. Show that the anharmonic ratio $D\left(E, F, E^{\prime}, F^{\prime}\right)$ is the same for all triangles $A B C$.

Elementary Problem 1217, American Mathematical Monthly, 63, (1956), 342.
E 1217. Proposed by Hiiseyin Demir, Zonguldak, Turkey
Evaluate

$$
\prod_{d \mid n} d^{\phi(n / d)+\phi(d)} .
$$

Elementary Problem 1778, American Mathematical Monthly, 72, (1965), 420.
E 1778. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey

If $R, r, r_{1}, r_{2}, r_{3}$ are the circumradius, inradius and exradii of a triangle, prove that

$$
\frac{1}{r^{3}}-\frac{1}{r_{1}^{3}}-\frac{1}{r_{2}^{3}}-\frac{1}{r_{3}^{3}}=\frac{12 R}{r \cdot r_{1} \cdot r_{2} \cdot r_{3}} .
$$

Elementary Problem 1779, American Mathematical Monthly, 72, (1965), 420.
E 1779. Proposed by Hiuseyin Demir, Middle East Technical University, Ankara, Turkey

If h_{i} and r_{i} are the altitudes and exradii of a triangle prove that

$$
\frac{r_{1}}{h_{1}}+\frac{r_{2}}{h_{2}}+\frac{r_{3}}{h_{3}} \geqq 3 .
$$

Elementary Problem 1877, American Mathematical Monthly, 73, (1966), 410.
E 1877. Proposed by Huseyin Demir, Middle East Technical University, Ankara

Let $A B C D E$ be a convex pentagon inscribed in a unit circle with $A E$ as diameter, and let $A B=a, B C=b, C D=c, D E=d$. Then prove that

$$
a^{2}+b^{2}+c^{2}+d^{2}+a b c+b c d<4
$$

Elementary Problem 1878, American Mathematical Monthly, 73, (1966), 410.
E 1878. Proposed by Huseyin Demir, Middle East Technical University, Ankara

Let $A_{1} A_{2} \cdots A_{n}$ be a regular polygon inscribed in circle (O) of radius R. Denote the incenter of the triangle $A_{i-1} A_{i} A_{i+1}($ indices $\bmod n)$ by I_{i}, and that of the triangle formed by $A_{i} A_{i+2}, A_{i+2} A_{i+1}, A_{i+1} A_{i+3}$ by J_{i}. Then show that the points I_{1}, \cdots, I_{n} and J_{1}, \cdots, J_{n} all lie on the same circle of radius R^{\prime} $=R \cos (3 \pi / 2 n) / \cos (\pi / 2 n)$.

Elementary Problem 2100, American Mathematical Monthly, 75, (1968), 670.
E 2100. Proposed by H. Demir, Middle East Technological University, Ankara, Turkey

Show that any five of the relations
(1) $\frac{x-a_{1}}{a_{1}-a_{2}}=\frac{a-b}{b-c}$,
(2) $\frac{x-b_{1}}{b_{1}-b_{2}}=\frac{b-c}{c-a}$,
(3) $\frac{x-c_{1}}{c_{1}-c_{2}}=\frac{c-a}{a-b}$,
(4) $x+a=b_{2}+c_{1}$,
(5) $x+b=c_{2}+a_{1}$,
(6) $x+c=a_{2}+b_{1}$
imply the sixth. Interpret this set of consistent relations geometrically letting a, b, c be the affixes, in the complex plane, of a triangle of reference $A B C$ and other numbers be those of other points.

Elementary Problem 2101, American Mathematical Monthly, 75, (1968), 670.
E 2101. Proposed by H. Demir, Middle East Technological University, Ankara, Turkey
$A B C$ is a triangle. Let P_{a} denote the parabola tangent to the sides $A B$, $A C$ at B, C respectively. The parabolas P_{b} and P_{c} are similarly defined. Let these parabolas intersect to the points $A^{\prime}, B^{\prime}, C^{\prime}$ inside $A B C$. Denote the areas of the (curvilinear) triangular regions $A B C, A^{\prime} B^{\prime} C^{\prime}, A B^{\prime} C^{\prime}, B C^{\prime} A^{\prime}, C A^{\prime} B^{\prime}$, $A^{\prime} B C, B^{\prime} C A, C^{\prime} A B$, by $\triangle, \triangle_{0}, \triangle_{a}^{\prime}, \Delta_{b}^{\prime}, \triangle_{c}^{\prime}, \triangle_{a}^{\prime \prime}, \triangle_{b}^{\prime \prime}, \triangle_{c}^{\prime \prime}$. Then prove
(1) $\triangle_{a}^{\prime}=\triangle_{b}^{\prime}=\triangle_{c}^{\prime}=\left(\triangle_{1}\right), \triangle_{a}^{\prime \prime}=\triangle_{b}^{\prime \prime}=\triangle_{c}^{\prime \prime}=\left(\triangle_{2}\right)$,
(2) $\triangle_{0}: \triangle_{1}: \triangle_{2}: \triangle=15: 17: 5: 81$.

Elementary Problem 2109, American Mathematical Monthly, 75, (1968), 780.
E 2109. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey

Let $A B C$ be a triangle and A^{\prime} be any fixed point on the side $B C$. Construct the inscribed triangle $A^{\prime} B^{\prime} C^{\prime}$ which is directly similar to a given triangle $X Y Z$.

Elementary Problem 2110, American Mathematical Monthly, 75, (1968), 780.
E 2110. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey

If, in a plane, the triangles $A U V, V B U, U V C$ are directly similar to a given triangle, then so is $A B C$.

Elementary Problem 2124, American Mathematical Monthly, 75, (1968), 899.
E 2124. Proposed by Hiiseyin Demir, Middle East Technical University, Ankara, Turkey

Construct on the sides $B C, C A, A B$ of a triangle $A B C$, exteriorly, the squares $B C D E, A C F G, B A H K$ and build the parallelograms $F C D Q, E B K P$. Show that $A P Q$ is an isosceles right triangle.

Elementary Problem 2160, American Mathematical Monthly, 76, (1969), 300.
E 2160. Proposed by Hiuseyin Demir, Middle East Technical University, Ankara, Turkey

Let p_{i}, x_{i} be the distances of an interior or a boundary point P of a triangle $A_{1} A_{2} A_{3}$ from the vertex A_{i} and the side opposite to $A_{i}, i=1,2,3$, with r the inradius. Prove the inequalities
(a)

$$
\sum_{i=1}^{3} p_{i}\left(\frac{1}{2} \sin A_{i}\right) \leqq \sum_{i=1}^{3} x_{i} \leqq \sum_{i=1}^{3} p_{i} \sin \left(\frac{1}{2} A_{i}\right)
$$

(b)

$$
p_{2} p_{3}+p_{3} p_{1}+p_{1} p_{2} \geqq 8 x_{1} x_{2} x_{3} / r .
$$

Elementary Problem 2213, American Mathematical Monthly, 77, (1970), 79.
E 2213. Proposed by H. Demir, Middle East Technical University, Ankara, Turkey

Let us say that a (planar) polygon has the Nagel property if the lines through the vertices of the polygon and bisecting the perimeter of the polygon are concurrent. It is known that all triangles have the Nagel Property and that not all quadrilaterals have the property. Determine the simple nondegenerate quadrilaterals that have the Nagel property.

Elementary Problem 2311, American Mathematical Monthly, 78, (1971), 793.
E 2311. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey

Prove that, if a quadrilateral $A_{1} A_{2} A_{3} A_{4}$ can be inscribed in a circle, then the (six) lines drawn from the midpoints of $A_{p} A_{q}$ perpendicular to $A_{r} A_{s}(p, q, r, s$ are distinct) are concurrent.

Elementary Problem 2312, American Mathematical Monthly, 78, (1971), 793.
E 2312. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey

Let D be a point in the plane of a positively oriented triangle $A B C$ and let $A D, B D, C D$ intersect the respective opposite sides in A_{1}, B_{1}, C_{1}. If the oriented segments $\bar{B} \bar{A}_{1}, \bar{C} \bar{B}_{1}, \bar{A} \bar{C}_{1}$ are equal ($=\delta$), then D is uniquely determined and lies in the interior of $A B C$. (Notice the analogy between D and the Brocard point Ω.)

Elementary Problem 2363, American Mathematical Monthly, 79, (1972), 662.
E 2363. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey

Characterize pairs of spherical triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ for which $A^{\prime}=a$, $B^{\prime}=b, C^{\prime}=c, A=a^{\prime}, B=b^{\prime}, C=c^{\prime}$.

Elementary Problem 2462, American Mathematical Monthly, 81, (1974), 281.
E 2462. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey

Let P be a point interior to the triangle $A_{1} A_{2} A_{3}$. Denote by R_{i} the distance from P to the vertex A_{i}, and denote by r_{i} the distance from P to the side a_{i} opposite to A_{i}. The Erdös-Mordell inequality asserts that

$$
R_{1}+R_{2}+R_{3} \geqq 2\left(r_{1}+r_{2}+r_{3}\right) .
$$

Prove that the above inequality holds for every point P in the plane of $A_{1} A_{2} A_{3}$ when we make the interpretation $R_{i} \geqq 0$ always and r_{i} is positive or negative depending on whether P and A_{i} are on the same side of a_{i} or on opposite sides.

Elementary Problem 2625, American Mathematical Monthly, 83, (1976), 812.
E 2625. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey
Let $A_{i}(i=0,1,2,3(\bmod 4))$ be four points on a circle Γ. Let t_{i} be the tangent to Γ at A_{i} and let p_{i} and q_{i} be the lines parallel to t_{i} passing through the points A_{i-1} and A_{i+1}, respectively. If $B_{i}=t_{i} \cap t_{i+1}$, $C_{i}=p_{i} \cap q_{i+1}$, show that the four lines $B_{i} C_{i}$ have a common point.

Elementary Problem 3135, American Mathematical Monthly, 93, (1986), 215.
E 3135. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.
For a scalene triangle $A B C$ inscribed in a circle, prove that there is a point D on the arc of the circle opposite to some vertex whose distance from this vertex is the sum of its distances from the other two vertices.

Show how D may be constructed with straightedge and compass.

Elementary Problem 3164, American Mathematical Monthly, 93, (1986), 566.

E 3164. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Let s, t be the lengths of the tangent line segments to an ellipse from an exterior point. Find the extreme values of the ratio s / t.

Elementary Problem 3422, American Mathematical Monthly, 98, (1991), 158.
E 3422. Proposed by H. Demir and C. Tezer, Middle East Technical University, Ankara, Turkey.

Suppose F and F^{\prime} are points situated symmetrically with respect to the center of a given circle, and suppose S is a point on the circle not on the line $F F^{\prime}$. Let P and P^{\prime} be the second points of intersection of $S F$ and $S F^{\prime}$ respectively with the circle. If the tangents to the circle at P and P^{\prime} intersect at T, prove that the perpendicular bisector of $F F^{\prime}$ passes through the midpoint of the line segment $S T$.

Elementary Problem 3469, American Mathematical Monthly, 98, (1991), 955.
E 3469. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Suppose P is a point in the interior of triangle $A B C$ and suppose $A P, B P, C P$ meet the lines $B C, C A, A B$ respectively at the points D, E, F. Prove that the centroids of the six triangles $P B D, P D C, P C E, P E A, P A F, P F B$ lie on a conic if and only if P lies on at least one of the three medians of the triangle.

4 Solutions of Elementary Problem for MONTHLY

Solution to Problem 1134:
American Mathematical Monthly, 62, (1955), 257.

Squares and Perfect Numbers

E 1134 [1954, 568]. Proposed by Hiiseyin Demir, Zonguldak, Turkey
Prove that a square integer is not a perfect number.
I. Solution by C. F. Pinzka, Princeton, N. J. If $N=\Pi p^{2 a}$, the sum of the divisors of N is

$$
\Pi \frac{p^{2 a+1}-1}{p-1} .
$$

Since the latter is always odd, it cannot equal $2 N$ as required for a perfect number.
II. Solution by C. D. Olds, San Jose State College. Euler proved that an odd perfect number must have the form $r^{4 k+1} P^{2}$, where r is a prime of the form $4 n+1$. An even perfect number must be of Euclid's type, that is, of the form $2^{p-1}\left(2^{p}-1\right)$ where $2^{p}-1$ is a prime. Thus a square cannot be perfect.

Solution to Problem 1160:
American Mathematical Monthly, 62, (1955), 658.

A Property of the Newton Line of a Complete Quadrilateral

E 1160 [1955, 182]. Proposed by Hiuseyin Demir, Zonguldak, Turkey
Prove that in a complete quadrilateral the isotomic line of any side with respect to the triangle formed by the other three is parallel to the Newton line of the quadrilateral.
I. Solution by the Proposer. Let d be one of the four sides of the quadrilateral and let $A B C$ be the corresponding triangle. Denote the intersections of d with the sides $B C, C A, A B$ of triangle $A B C$ by α, β, γ. The isotomic line $I J K$ of $\alpha \beta \gamma$ with respect to triangle $A B C$ is obtained by taking the symmetrics I, J, K of the points α, β, γ with respect to the midpoints $A^{\prime}, B^{\prime}, C^{\prime}$ of the sides $B C$, $C A, A B$ of triangle $A B C$. Let the midpoints of $A \alpha, B \beta, C \gamma$ be denoted by I^{\prime}, J^{\prime}, K^{\prime}. These points of the Newton line of the quadrilateral are evidently on the sides of the medial triangle $A^{\prime} B^{\prime} C^{\prime}$ of triangle $A B C$. It is easy to see that the complete quadrilateral formed by triangle $A B C$ and line $I J K$ is similar to that formed by triangle $A^{\prime} B^{\prime} C^{\prime}$ and line $I^{\prime} J^{\prime} K^{\prime}$, for, firstly, triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar, and are in the ratio $2: 1$, and secondly,

$$
B I=C \alpha=2\left(B^{\prime} I^{\prime}\right), \quad A J=C \beta=2\left(A^{\prime} J^{\prime}\right), \quad A K=B \gamma=2\left(A^{\prime} K^{\prime}\right)
$$

This proves that the lines $I J K$ and $I^{\prime} J^{\prime} K^{\prime}$ are parallel.
II. Solution by Sister M. Stephanie, Georgian Court College, Lakewood, N.J. Since there is one and only one parabola tangent to four lines, let us consider the complete quadrilateral as tangent to the parabola (referred to rectangular coordinates) $y^{2}=4 a x$. Then $y=m_{i} x+a / m_{i}, i=1,2,3,4$, may be taken as the equations of the four sides $1,2,3,4$ of the quadrilateral. Point

$$
\left(a / m_{1} m_{2}, a / m_{1}+a / m_{2}\right)
$$

is the intersection of sides 1 and 2 ; other intersections are similarly given. The midpoint of the side 2 of triangle 123 has coordinates

$$
(a / 2)\left[\left(m_{1}+m_{3}\right) / m_{1} m_{2} m_{2}, 2 / m_{2}+1 / m_{1}+1 / m_{3}\right] .
$$

If (x, y) is the point on side 2 isotomic to the intersection of side 4 with side 2 , then

$$
y+a / m_{2}+a / m_{4}=2 a / m_{2}+a / m_{1}+a / m_{3}
$$

whence

$$
y=a\left(1 / m_{1}+1 / m_{2}+1 / m_{3}-1 / m_{4}\right),
$$

a result which is symmetric in m_{1}, m_{2}, m_{3}. This proves that the isotomic line of side 4 with respect to triangle 123 is parallel to the axis of the parabola. But the Newton line is also parallel to the axis of the parabola, for it is the locus of centers of all conics inscribed in the quadrilateral, and this locus contains the center of the parabola.

Solution to Problem 1197:
American Mathematical Monthly, 63, (1956), 493.

A Rich Configuration

E 1197 [1956, 39]. Proposed by Hüseyin Demir, Zonguldak, Turkey
Let $A B C$ be a right triangle and $C H$ the altitude on the hypotenuse $A B$. Show that the sum of the radii of the inscribed circles of triangles $A B C, H C A$, $H C B$ is equal to $C H$.

Solution by Leon Bankoff, Los Angeles, Calif. I. The diameter of the circle inscribed in a right triangle is equal to the sum of the legs minus the hypotenuse. Applying this relation in triangles $A B C, H C A, H C B$, we get

$$
\frac{(A C+C B-A B)+(A H+C H-A C)+(C H+H B-C B)}{2}=C H .
$$

II. In similar right triangles, the ratios of inradius to hypotenuse are equal. We may therefore write

$$
r / c=r_{1} / b=r_{2} / a=\left(r+r_{1}+r_{2}\right) /(a+b+c)
$$

where r, r_{1}, r_{2} are the inradii of triangles $A B C, H C A, H C B$. Since

$$
r / c=C H /(a+b+c)
$$

it follows that $r+r_{1}+r_{2}=\mathrm{CH}$.
Additional selected properties of the configuration. R, S, T are the incenters of triangles $A H C, C H B, A B C$, respectively, and $H, R^{\prime}, S^{\prime}, T^{\prime}$ the orthogonal projections of C, R, S, T on $A B$. Let r, r_{1}, r_{2} denote the inradii of triangles $A B C$,
$A H C, C H B . P$ and Q are the feet of the cevians $C R$ and $C S . R S$ cuts $A C$ in U and $C B$ in $V . K$ is the intersection of $P S$ and $R Q$.
(1) T^{\prime} is the circumcenter of triangle $R S T ; Q, S, T, R, P$ are concyclic; $P T^{\prime}=T T^{\prime}=T^{\prime} Q$.
(2) T is the orthocenter of triangle $C R S$ and the circumcenter of triangle $C P Q$.
(3) $r_{1}^{2}+r_{2}^{2}=r^{2}$.
(4) $R S=C T=P T=Q T=r \sqrt{2}$.
(5) Triangles $H S R, A B C, A H C, H C B$ are similar.
(6) A, R, S, B are concyclic. Triangles $R S T$ and $A B T$ are inversely similar.
(7) R, T^{\prime}, H, S are concyclic. ($R S$ is a diameter of the circle.)
(8) $T^{\prime} S$ is parallel to $A C ; R T^{\prime}$ is parallel to $C B$.
(9) Triangles $R R^{\prime} T^{\prime}$ and $T^{\prime} S^{\prime} S$ are congruent (and similar to triangle $A B C$).
(10) Triangles $A T B, B C S, A R C$ are similar.
(11) Angle $A T B=$ angle $B S C=$ angle $A R C=135^{\circ}$.
(12) $A C=A Q ; P B=C B$.
(13) $C U=C V ; C T$ is the perpendicular bisector of $U V$.
(14) $P S, R Q, C H$ are concurrent at K, the orthocenter of triangle $C P Q$.
(15) $P S$ is parallel to $A T ; R Q$ is parallel to $T B$; triangles $P B S$ and $C S B$ are congruent; triangles $A Q R$ and $A R C$ are congruent.
(16) The midpoint of $R S$ is the nine point center of triangle $C P Q$.
(17) The circumcircle of triangle $H S R$ is the nine point circle of triangle $C P Q$.
(18) The circumcircles of triangles $A R C$ and $C S B$ are tangent at C, and $C T$ is their common internal tangent.
(19) $R T=K S=S Q ; R P=R K=T S$; triangles $P K R$ and $K Q S$ are isosceles right triangles. (Also triangle $R T^{\prime} S$.)
(20) A, P, T, C are concyclic; B, Q, T, C are concyclic.
(21) The perimeter of triangle $T^{\prime} S^{\prime} S=$ perimeter of triangle $R R^{\prime} T=C H$ (since $S S^{\prime}=r_{2}, T^{\prime} S^{\prime}=r_{1}, T^{\prime} S=r$).
(22) Area of triangle $R S T=(a+b-c)^{3} / 8 c=r^{3} / c$.
(23) Area of pentagon $\operatorname{PQSTR}=2 r^{3} / c+r^{2}$.
(24) Area of triangle $C P Q=a b r / c$.

Also solved by W. A. Al-Salam, L. C. Barrett, Robert Bart, G. E. Bills, R. L. Caskey, G. B. Charlesworth, N. A. Childress, T. Y. Chow, Mary Constable, R. J. Cormier, K. W. Crain, A. E. Danese, D. E. D'Atri, G. W. Day, Hazel Evans, Herta Freitag, Michael Goldberg, A. J. Goldman, Peter Gould, Cornelius Groenewoud, D. J. Hansen, Vern Hoggatt, R. T. Hood, Roger Hou, J. P. Hoyt, Raymond Huck, Louise Hutchinson, A. R. Hyde, P. W. M. John, Edgar Karst, M. S. Klamkin, W. G. Koellner, Sam Kravitz, M. A. Laframboise, L. E. Laird, B. R. Leeds, L. I. Lokomowitz, Robert Lynch, D. C. B. Marsh, Beckham Martin, C. N. Mills, C. S. Ogilvy, Margaret Olmsted, M. J. Pascual, Walter Penney, L. L. Pennisi and N. C. Scholomiti (jointly), C. F. Pinzka, P. W. A. Raine, M. A. Rachid, L. A. Ringenberg, Azriel Rosenfeld, Donald Rubin, C. M.

Sandwick, Sr., E. D. Schell, G. J. Simmons, Bernard Smilowitz, Sister M. Stephanie, A. V. Sylwester, W. R. Talbot, Chih-yi Wang, R. M. Warten, Dale Woods, Roscoe Woods, André Yandl, David Zeitlin, and the proposer. Late solutions by Paul Herzberg and Alan Wayne.

It was pointed out that this problem appears in N. A. Court, College Geometry, 2nd ed., p. 93, ex. 19b, and in Scripta Mathematica, vol. 16 (1950), p. 167.

Solution to Problem 1209:
American Mathematical Monthly, 63, (1956), 186.

A Cross Ratio Associated with Any Triangle

E 1209 [1956, 186]. Proposed by Hiiseyin Demir, Zonguldak, Turkey
Let $A B C$ be any triangle and (I) its incircle. Let (I) touch $B C, C A, A B$ at D, E, F, and intersect the cevians $B E, C F$ at E^{\prime}, F^{\prime} respectively. Show that the anharmonic ratio $D\left(E, F, E^{\prime}, F^{\prime}\right)$ is the same for all triangles $A B C$.
I. Solution by W. B. Carver, Cornell University. This is obviously a metrically special case of a more general projective theorem. The incircle may be replaced by any conic tangent to the sides at D, E, F, with the conic cutting the lines $B E$ and $C F$ at E^{\prime} and F^{\prime} respectively. By one of the limiting cases of Brianchon's theorem the lines $A D, B E, C F$ meet in a point G. We set up a homogeneous coordinate system with A, B, C, G as the points $(1,0,0),(0,1,0),(0,0,1)$, $(1,1,1)$ respectively. It then follows readily that D, E, F are the points $(0,1,1)$, $(1,0,1),(1,1,0)$; the conic has the equation

$$
x^{2}+y^{2}+z^{2}-2 y z-2 z x-2 x y=0
$$

E^{\prime}, F^{\prime} are the points $(1,4,1),(1,1,4)$; the lines through D have the equations $k x+y-z=0$ with $k=1,-1,-3,3$ for $D E, D F, D E^{\prime}, D F^{\prime}$ respectively; and the required anharmonic ratio is therefore

$$
(1+3)(-1-3) /(1-3)(-1+3)=4
$$

II. Solution by M. S. Klamkin, Polytechnic Institute of Brooklyn. By a central projection, triangle $A B C$ and its incircle (I) can be transformed into an equilateral triangle and its incircle. The anharmonic ratio $D\left(E, F, E^{\prime}, F^{\prime}\right)$ is invariant under this transformation and consequently is constant for all triangles. It is easy to show that $D\left(E, F, E^{\prime}, F^{\prime}\right)=4$.

Also solved by N. A. Court, P. W. M. John, D. C. B. Marsh, O. J. Ramler, Roscoe Woods, and the proposer.

Solution to Problem 1217:
American Mathematical Monthly, 64, (1957), 45.

A Property of Euler's Function

E 1217 [1956, 342]. Proposed by Hiuseyin Demir, Zonguldak, Turkey
Evaluate

$$
\prod_{d \mid n} d^{\phi(n / d)+\phi(d)}
$$

Solution by J. B. Johnston, Cornell University. Let f be any function defined on the integers. Then

$$
\begin{aligned}
\prod_{d \mid n} d^{f(d)+f(n / d)} & =\prod_{d \mid n} d^{f(d)} \coprod_{d \mid n} d^{f(n / d)} \\
& =\coprod_{d \mid n} d^{f(d)} \coprod_{d \mid n}(n / d)^{f(d)} \\
& =\prod_{d \mid n} n^{f(d)}=\sum^{d \mid n} f^{f(d)}
\end{aligned}
$$

Since
(1)

$$
\sum_{d \mid n} \phi(d)=n
$$

the answer to the given problem is n^{n}.
Also solved by W. J. Buckingham, Leonard Carlitz, A. E. Danese, M. P. Drazin, L. T. Gardner, A. J. Goldman, D. S. Greenstein, Cornelius Groenewoud, Emil Grosswald, Virginia Hanly, A. R. Hyde, Richard Kelisky, Sidney Kravitz, R. G. McDermot, D. C. B. Marsh, Leo Moser, J. B. Muskat, F. R. Olson, Hiram Paly, M. Perisastri, Azriel Rosenfeld, A. V. Sylwester, Chih-yi Wang, David Zeitlin, and the proposer. Late solution by M. S. Klamkin.

Editorial Note. For a proof of (1) see, e.g., Uspensky and Heaslet, Elementary Number Theory, p. 113. As another application of the general result established above we have

$$
\coprod_{d \mid n} d^{(n / d)+d}=n^{\sigma(n)},
$$

where $\sigma(n)$ is the sum of the divisors of n.

Solution to Problem 1778:
American Mathematical Monthly, 73, (1966), 667.

The Radii of a Triangle

E 1778 [1965, 420]. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey

If $R, r, r_{1}, r_{2}, r_{3}$ are the circumradius, inradius and exradii of a triangle, prove that

$$
\frac{1}{r^{3}}-\frac{1}{r_{1}^{3}}-\frac{1}{r_{2}^{3}}-\frac{1}{r_{3}^{3}}=\frac{12 R}{r \cdot r_{1} \cdot r_{2} \cdot r_{3}} .
$$

Solution by Ralph Schreiber, Warsaw High School, Warsaw, Ind. Denote by \triangle the area of triangle $A B C$, by s the semiperimeter, by r_{a} the exradius corresponding to side a, and so forth. We recall familiar identities:

$$
\Delta=r s=r_{a}(s-a)=r_{b}(s-b)=r_{c}(s-c)=\sqrt{ } r r_{a} r_{b} r_{c}=a b c / 4 R
$$

Thus

$$
\begin{aligned}
\frac{1}{r^{3}}-\frac{1}{r_{a}^{3}}-\frac{1}{r_{b}^{3}}-\frac{1}{r_{c}^{3}} & =\frac{1}{\triangle^{3}}\left[s^{3}-(s-a)^{3}-(s-b)^{3}-(s-c)^{3}\right] \\
& =3 a b c / \triangle^{3}=12 R / \triangle^{2}=12 R / r r_{a} r_{b} r_{a}
\end{aligned}
$$

Also solved by A. N. Aheart, Leon Bankoff, W. J. Blundon, D. I. A. Cohen, Ragnar Dybvik (Norway), Mrs. A. C. Garstang, Michael Goldberg, Louise S. Grinstein, D. M. Hancasky, E. S. Langford, Ruth S. Lefkowitz, F. Leuenberger (Switzerland), Andrzej Makowski (Poland), D. C. B. Marsh, F. R. Prieto, J. M. Quoniam (France), S. Bhaskara Rao (India), Simeon Reich (Israel), P. A. Scheinok, Klaus Schmitt, R. Sivaramakrishnan (India), Sidney Spital, Sister M. Stephanie, M. V. Tamhankar \& M. B. Suryanarayana (India), Simon Vatriquant (Belgium), C. S. Venkataraman (India), William Wernick, and the proposer.

Solution to Problem 1779:
American Mathematical Monthly, 73, (1966), 668.

The Altitudes and Exradii of a Triangle

E 1779 [1965, 420]. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey

If h_{i} and $r_{\boldsymbol{i}}$ are the altitudes and exradii of a triangle prove that

$$
\frac{r_{1}}{h_{1}}+\frac{r_{2}}{h_{2}}+\frac{r_{3}}{h_{3}} \geqq 3 .
$$

I. Solution by D. C. B. Marsh, Colorado School of Mines. Since $2 / h_{i}=1 / r_{j}$ $+1 / r_{k}$ for i, j, k a cyclic permutation of $1,2,3$ (R. A. Johnson, Modern Geometry, p. 189; or use the identities in E 1778 above together with $1 / r=1 / r_{1}+1 / r_{2}$ $\left.+1 / r_{3}\right)$ it follows immediately that $\sum\left(r_{i} / h_{i}\right)=\frac{1}{2} \sum_{i \neq j}\left(r_{i} / r_{j}\right) \geqq \frac{1}{2}(6)=3$, since $(x / y)+(y / x) \geqq 2$ for positive x, y. Moreover, equality obtains only if $r_{1}=r_{2}=r_{3}$, i.e., the triangle is equilateral.
II. Solution by H. Guggenheimer, University of Minnesota. We may generalize by securing the inequality $\sum\left(r_{i} / h_{i}\right)^{n} \geqq 3, n \geqq 1$. Actually more is true: Let t_{i} be the lengths of the angle bisectors of the triangle. Since $t_{i} \geqq h_{i}$, the proposed inequality is weaker than

$$
\sum_{i=1}^{3}\left(\frac{r_{i}}{t_{i}}\right)^{m} \geqq 3 \quad m>0
$$

which we now prove.
Let s be the semiperimeter of the triangle, a_{i} the sides. Leuenberger has proved (Elemente Math., 17 (1962) 45-46; see also 16 (1961) p. 129) that $t_{i} \leqq\left[s\left(s-a_{i}\right)\right]^{1 / 2}$. Hence

$$
\begin{aligned}
\sum\left(\frac{r_{i}}{t_{i}}\right)^{m} & \geqq \sum_{i \neq j \neq k}\left[\frac{s\left(s-a_{j}\right)\left(s-a_{k}\right)}{s\left(s-a_{i}\right)^{2}}\right]^{m / 2} \\
& =\frac{1}{\left[\left(s-a_{1}\right)\left(s-a_{2}\right)\left(s-a_{3}\right)\right]^{m}} \sum_{j \neq k}\left[\left(s-a_{j}\right)\left(s-a_{k}\right)\right]^{3 m / 2}
\end{aligned}
$$

The desired result now follows from the geometric-arithmetic mean inequality, and again equality holds only for the equilateral triangle.

Also solved by A. N. Aheart, Leon Bankoff, W. J. Blundon, D. I. A. Cohen, Mrs. A. C. Garstang, Michael Goldberg, H. Guggenheimer, D. M. Hancasky, E. S. Langford, F. Leuenberger (Switzerland), Andrzej Makowski (Poland), F. R. Prieto, J. M. Quoniam (France), S. Bhaskara Rao (India), Simeon Reich (Israel), P. A. Scheinok, Ralph Schreiber, R. Sivaramakrishnan (India), Sidney Spital, Sister M. Stephanie, M. V. Tamhankar \& M. B. Suryanarayana (India), P. D. Thomas, Simon Vatriquant (Belgium), C. S. Venkataraman (India), and the proposer.

Makowski's student, Tadeusz Figiel observed that the required inequality is equivalent to the fact that the area of an orthic triangle is not greater than one-quarter of the area of a given (acute-angled) triangle. [Proof: Let $A B C$ be an orthic triangle of $A_{1} B_{1} C_{1}$. Then A_{1}, B_{1}, C_{1} are the centers of ex-circles and the ratio of areas of $A B C_{1}$ and $A B C$ is equal to the ratio of altitudes on the common side $A B$, i.e., r_{z} / h_{z}.]

Solution to Problem 1877:
American Mathematical Monthly, 74, (1967), 869.

Convex Pentagon Inscribed in a Semicircle

E 1877 [1966, 410]. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey

Let $A B C D E$ be a convex pentagon inscribed in a unit circle with $A E$ as diameter, and let $A B=a, B C=b, C D=c, D E=d$. Then prove that

$$
a^{2}+b^{2}+c^{2}+d^{2}+a b c+b c d<4 .
$$

Solution by Allan Wachs, Student at Far Rockaway (N. Y.) High School. Draw $A C$ and $C E$ and put $\theta=\Varangle C E A$. Then $\Varangle C A E=90^{\circ}-\theta, \Varangle C B A=180^{\circ}-\theta$, $\Varangle C D E=180^{\circ}-\left(90^{\circ}-\theta\right)=90^{\circ}+\theta$. By the law of cosines,

$$
\begin{equation*}
A C^{2}=a^{2}+b^{2}-2 a b \cos \left(180^{\circ}-\theta\right)=a^{2}+b^{2}+2 a b \cos \theta \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
C E^{2}=c^{2}+d^{2}-2 c d \cos \left(90^{\circ}+\theta\right)=c^{2}+d^{2}+2 c d \sin \theta \tag{2}
\end{equation*}
$$

From the right triangle $A C E, A C^{2}+C E^{2}=A E^{2}=4$, also $A C=2 \sin \theta>b$ and $C E=2 \cos \theta>c$ (because of the obtuse angles). Substitution of these results into the sum of (1) and (2) gives at once

$$
4>a^{2}+b^{2}+c^{2}+d^{2}+a b c+b c d
$$

Also solved by Leon Bankoff, W. J. Blundon, L. Carlitz, Mannis Charosh, M. A. Ettrick, Michael Goldberg, M. G. Greening (Australia), Ned Harrell, Donald Jeffords, Erwin Just, J. D. E. Konhauser, Dan Marcus, Lieselotte Miller, Norman Miller, C. B. A. Peck, A1 Somoyajulu, J. L. Standig, C. S. Venkataraman (India), J. C. Williams, Dale Woods, and the proposer.

Solution to Problem 1878:
American Mathematical Monthly, 74, (1967), 869.

Convex Pentagon Inscribed in a Semicircle

E 1877 [1966, 410]. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey

Let $A B C D E$ be a convex pentagon inscribed in a unit circle with $A E$ as diameter, and let $A B=a, B C=b, C D=c, D E=d$. Then prove that

$$
a^{2}+b^{2}+c^{2}+d^{2}+a b c+b c d<4
$$

Solution by Allan Wachs, Student at Far Rockaway (N. Y.) High School. Draw $A C$ and $C E$ and put $\theta=\Varangle C E A$. Then $\Varangle C A E=90^{\circ}-\theta, \Varangle C B A=180^{\circ}-\theta$, $\Varangle C D E=180^{\circ}-\left(90^{\circ}-\theta\right)=90^{\circ}+\theta$. By the law of cosines,

$$
\begin{align*}
& A C^{2}=a^{2}+b^{2}-2 a b \cos \left(180^{\circ}-\theta\right)=a^{2}+b^{2}+2 a b \cos \theta \tag{1}\\
& C E^{2}=c^{2}+d^{2}-2 c d \cos \left(90^{\circ}+\theta\right)=c^{2}+d^{2}+2 c d \sin \theta \tag{2}
\end{align*}
$$

From the right triangle $A C E, A C^{2}+C E^{2}=A E^{2}=4$, also $A C=2 \sin \theta>b$ and $C E=2 \cos \theta>c$ (because of the obtuse angles). Substitution of these results into the sum of (1) and (2) gives at once

$$
4>a^{2}+b^{2}+c^{2}+d^{2}+a b c+b c d
$$

Also solved by Leon Bankoff, W. J. Blundon, L. Carlitz, Mannis Charosh, M. A. Ettrick, Michael Goldberg, M. G. Greening (Australia), Ned Harrell, Donald Jeffords, Erwin Just, J. D. E. Konhauser, Dan Marcus, Lieselotte Miller, Norman Miller, C. B. A. Peck, Al Somoyajulu, J. L. Standig, C. S. Venkataraman (India), J. C. Williams, Dale Woods, and the proposer.

Solution to Problem 2100:
American Mathematical Monthly, 76, (1969), 563.

Six Relations

E 2100 [1968, 670]. Proposed by H. Demir, Middle East Technological University, Ankara, Turkey

Show that any five of the relations
(1) $\frac{x-a_{1}}{a_{1}-a_{2}}=\frac{a-b}{b-c}$,
(2) $\frac{x-b_{1}}{b_{1}-b_{2}}=\frac{b-c}{c-a}$,
(3) $\frac{x-c_{1}}{c_{1}-c_{2}}=\frac{c-a}{a-b}$,
(4) $x+a=b_{2}+c_{1}$,
(5) $x+b=c_{2}+a_{1}$,
(6) $x+c=a_{2}+b_{1}$
imply the sixth. Interpret this set of consistent relations geometrically letting a, b, c be the affixes, in the complex plane, of a triangle of reference $A B C$ and other numbers be those of other points.

Solution by Michael Goldberg, Washington, D. C. Take any triangle, represented by the vertices a, b, c. Take any point x in the plane of the triangle. Draw parallels to the sides of the triangle through the point x. Let the intersections of these parallels with the sides be $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$, as shown in the figure. Then the six given relations hold. If one of the six points, say c_{2}, is omitted, then x

can be found as the intersection of $a_{2} c_{1}$ with $b_{2} a_{1}$, and then c_{2} is determined as the intersection of $b_{1} x$ with $a b$.

Also solved by A. F. Gentzel, Jr., Simeon Reich (Israel), and the proposer.

Solution to Problem 2101:
American Mathematical Monthly, 76, (1969), 564.

Three Parabolas and a Triangle

E 2101 [1968, 670]. Proposed by H. Demir, Middle East Technological University, Ankara, Turkey
$A B C$ is a triangle. Let P_{a} denote the parabola tangent to the sides $A B, A C$ at B, C respectively. The parabolas P_{b} and P_{c} are similarly defined. Let these parabolas intersect at the points $A^{\prime}, B^{\prime}, C^{\prime}$ inside $A B C$. Denote the areas of the (curvilinear) triangular regions $A B C, A^{\prime} B^{\prime} C^{\prime}, A B^{\prime} C^{\prime}, B C^{\prime} A^{\prime}, C A^{\prime} B^{\prime}, A^{\prime} B C$, $B^{\prime} C A, C^{\prime} A B$ by $\Delta, \Delta_{0}, \Delta_{a}^{\prime}, \Delta_{b}^{\prime}, \Delta_{c}^{\prime}, \Delta_{a}^{\prime \prime}, \Delta_{b}^{\prime \prime}, \Delta_{c}^{\prime \prime}$. Then prove

$$
\begin{gather*}
\Delta_{a}^{\prime}=\Delta_{b}^{\prime}=\Delta_{c}^{\prime}\left(\equiv \Delta_{1}\right), \quad \Delta_{a}^{\prime \prime}=\Delta_{b}^{\prime \prime}=\Delta_{c}^{\prime \prime}\left(\equiv \Delta_{2}\right), \tag{1}\\
\Delta_{0}: \Delta_{1}: \Delta_{2}: \Delta=15: 17: 5: 81 . \tag{2}
\end{gather*}
$$

Solution by the proposer. Under parallel projections the nature of conics, the tangency and ratios of segments and areas are invariant, and any triangle can be transformed into an equilateral triangle. Hence it will suffice to prove the assertion for an equilateral triangle. So, part (1) is already proved.

To prove (2), let $A B C$ be an equilateral triangle located in the coordinate plane such that $A=(1, \sqrt{3}), B=(0,0), C=(2,0)$. The equations of parabolas P_{a} and P_{c} are found to be

$$
\begin{align*}
& P_{a}: y=\left(x-\frac{1}{2} x^{2}\right) \sqrt{ } 3, \tag{1}\\
& P_{c}: \sqrt{ } 3 x^{2}+6 x y+3 \sqrt{ } 3 y^{2}-16 y=0 . \tag{2}
\end{align*}
$$

From (1) and (2) we obtain

$$
\begin{equation*}
\Delta_{0}+2 \Delta_{1}+\Delta_{2}=\sqrt{3} \int_{0}^{2}\left(x-\frac{1}{2} x^{2}\right) d x=\frac{2}{3} \sqrt{ } 3=\frac{2}{3} \Delta \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
y=\frac{8 \sqrt{ } 3}{9}-\frac{\sqrt{ } 3}{3} x-\frac{4 \sqrt{ } 3}{9} \sqrt{4-3 x} \quad\left(0 \leqq x \leqq \frac{4}{3}\right) . \tag{4}
\end{equation*}
$$

We find, therefore,

$$
\begin{equation*}
\Delta_{2}=2 \int_{0}^{1} y d x=\frac{5 \sqrt{ } 3}{81}=\frac{5}{81} \Delta, \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta_{0}+3 \Delta_{1}+3 \Delta_{2}=\Delta . \tag{6}
\end{equation*}
$$

Solving the system (3), (5), (6) for $\Delta_{0}, \Delta_{1}, \Delta_{2}$, we get the required result.
Also solved by Anders Bager (Denmark), Jordi Dou (Spain), Michael Goldberg, M. G. Greening (Australia), Norman Miller, J. M. Quoniam (France), and A. Zujus.

Solution to Problem 2109:
American Mathematical Monthly, 76, (1969), 698.

Triangle Construction

E 2109 [1968, 780]. Proposed by H. Demir, Middle East Technical University, Ankara, Turkey

Let $A B C$ be a triangle and A^{\prime} be any fixed point on the side $B C$. Construct the inscribed triangle $A^{\prime} B^{\prime} C^{\prime}$ which is directly similar to a given triangle $X Y Z$.

Note by A. W. Walker, Toronto, Canada. The required construction will be found in N. A. Court, College Geometry, ed. 1, 1925, p. 47. It is a simple application of the following theorem, established on p. 46: If one vertex of a triangle of variable size and given shape remains fixed and a second vertex moves on a given straight line, then the locus of the third vertex is also a straight line.

Also solved by Anders Bager (Denmark), Walter Bluger, C. W. Eliason, Jr., Michael Goldberg, M. G. Greening (Australia), Beckham Martin, D. N. Page, and the proposer.

Solution to Problem 2110:

American Mathematical Monthly, 76, (1969), 698.

Similar Triangles

E 2110 [1968, 780]. Proposed by H. Demir, Middle East Technical University, Ankara, Turkey

If, in a plane, the triangles $A U V, V B U, U V C$ are directly similar to a given triangle, then so is $A B C$.

Solution by M. G. Greening, University of New South Wales, Australla. Represent the points by complex numbers using the appropriate lower case letters and take the given triangle as $Z_{1} Z_{2} Z_{3}$. Let the direct similarities be $z \rightarrow \alpha_{i} z+\beta_{i}$ ($i=1,2,3$). Then $u=\alpha_{i} z_{i+1}+\beta_{i}, v=\alpha_{i} z_{i+2}+\beta_{i} \quad(i=1,2,3)$, taking subscripts modulo 3. Then $\alpha_{i} z_{i}\left(z_{i+1}-z_{i+2}\right)=z_{i}(u-v)$ and

$$
\beta_{i}\left(z_{i+1}-z_{i+2}\right)=z_{i+1} v-z_{i+2} u
$$

so that

$$
\sum_{i=1}^{3}\left(\alpha_{i} z_{i}+\beta_{i}\right)\left(z_{i+1}-z_{i+2}\right)=0 .
$$

As $\sum_{i=1}^{3}\left(z_{i+1}-z_{i+2}\right)=0$ and $\sum_{i=1}^{3} z_{i}\left(z_{i+1}-z_{i+2}\right)=0$ we get

$$
0=\left|\begin{array}{lll}
\alpha_{1} z_{1}+\beta_{1} & z_{1} & 1 \\
\alpha_{2} z_{2}+\beta_{2} & z_{2} & 1 \\
\alpha_{3} z_{3}+\beta_{3} & z_{3} & 1
\end{array}\right|=\left|\begin{array}{lll}
a & z_{1} & 1 \\
b & z_{2} & 1 \\
c & z_{3} & 1
\end{array}\right|
$$

which is a sufficient condition for a direct similarity: $z_{1} \rightarrow a, z_{2} \rightarrow b, z_{3} \rightarrow c$ to exist.
Also solved by Leon Bankoff, Jordi Dou (Spain), C. W. Eliason, Jr., Michael Goldberg, Norman Miller, Simeon Reich (Israel), A. W. Walker, and the proposer.

Walker points out that the result may be found on p. 289 of R. A. Johnson, Modern Geometry (1929).

Solution to Problem 2124:
American Mathematical Monthly, 76, (1969), 938.
All Triangles Generate Right Triangles
E 2124 [1968, 899]. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey

Construct on the sides $B C, C A, A B$ of a triangle $A B C$, exteriorly, the squares $B C D E, A C F G, B A H K$ and build parallelograms $F C D Q, E B K P$. Show that $A P Q$ is an isosceles right triangle.

Solution by W. E. Buker, Pittsburgh Public Schools. Assign coordinates $A(0,0) ; B(a, 0) ; C(b, c)$. Then find by inspection the coordinates $F(b-c, b+c)$, $D(b+c, c+a-b), Q(b, a+c), K(a,-a), E(a+c, a-b), P(a+c,-b)$. Since $A Q$ and $A P$ have equal lengths and are perpendicular, the theorem follows.

Also solved by forty other readers.
Note. It follows at once that if parallelogram $H A G R$ is constructed, then $B Q R$ and $C R P$ are also isosceles right triangles.
A. W. Walker points out that an extensive investigation of triangles bordered by squares is found in a paper by Musselman, this Monthly, 43 (1936), 539-548.

Solution to Problem 2160:
American Mathematical Monthly, 76, (1969), 1146.

Some New Triangle Inequalities

E 2160 [1969, 300]. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey

Let p_{i}, x_{i} be the distances of an interior or a boundary point P of a triangle $A_{1} A_{2} A_{3}$ from the vertex A_{i} and from the side opposite to $A_{i}, i=1,2,3$, with r the inradius. Prove the inequalities
(a)

$$
\begin{aligned}
\sum_{i=1}^{3} p_{i}\left(\frac{1}{2} \sin A_{i}\right) \leqq \sum_{i=1}^{3} x_{i} & \leqq \sum_{i=1}^{3} p_{i} \sin \left(\frac{1}{2} A_{i}\right) . \\
p_{2} p_{3}+p_{3} p_{1}+p_{1} p_{2} & \geqq 8 x_{1} x_{2} x_{3} / r .
\end{aligned}
$$

Solution by M. G. Greening, University of New South Wales, Australia. Let a_{i} be the side opposite A_{i}, let P_{i} be the angle $A_{i-1} P A_{i+1}, B_{i, j}$ be the angle between p_{i} and a_{j} at A_{i}, so that $B_{i, i+1}+B_{i, i-1}=A_{i}$. (All additions of subscripts are modulo 3.) Then $x_{i}=p_{i+1} \sin B_{i+1, i}=p_{i-1} \sin B_{i-1, i}$ and

$$
\begin{aligned}
\sum_{i} x_{i} & =\frac{1}{2} \sum_{j} p_{j}\left(\sin B_{j, j+1}+\sin B_{j, j-1}\right) \\
& =\frac{1}{2} \sum_{j} p_{j} \cdot 2 \sin \left(\frac{1}{2} A_{j}\right) \cos \frac{1}{2}\left(B_{j, j+1}-B_{j, j-1}\right) .
\end{aligned}
$$

The inequality $0 \leqq\left|B_{j, j+1}-B_{j, j-1}\right| \leqq A_{j}$ then yields (a).
As $p_{1} p_{2} \sin P_{3}=x_{3} a_{3}$, we obtain

$$
\sum_{i} p_{i} p_{i+1}=\sum_{i} \frac{x_{i} a_{i}}{\sin P_{i}} \geqq \frac{3\left(\prod_{i} a_{i} \cdot \prod_{i} x_{i}\right)^{1 / 3}}{\left(\prod_{i} \sin P_{i}\right)^{1 / 3}}
$$

$$
\geqq 3\left(\prod_{i} a_{i} \prod_{i} x_{i}\right)^{1 / 3}\left(\prod_{i} \sin P_{i}\right)^{-1 / 3} \geqq 2 \sqrt{ } 3\left(\prod_{i} a_{i} \cdot \prod_{i} x_{i}\right)^{1 / 3} .
$$

The last statement follows from the fact that $\prod_{i} \sin P_{i}$ with $\sum_{i} P_{i}=2 \pi$ has a maximum when $P_{1}=P_{2}=P_{3}$.

For (b) we now show

$$
\begin{equation*}
2 \sqrt{ } 3 r\left(\prod_{i} a_{i}\right)^{1 / 3} \geqq 8\left(\prod_{i} x_{i}^{2}\right)^{1 / 3} \tag{i}
\end{equation*}
$$

As $\sum_{i} x_{i}=2 \Delta, \prod_{i} x_{i}$ has a maximum when $a_{1} x_{1}=a_{2} x_{2}=a_{3} x_{3}=2 \Delta / 3$, so that $\max 8\left(\prod_{i} x_{i}^{2}\right)^{1 / 3}=2^{5} \Delta^{2} 3^{-2}\left(\prod_{i} a_{i}\right)^{-2 / 3}$. (i) will follow if $3^{5 / 2} r \cdot \prod_{i} a^{i} \geqq 2^{4} \Delta^{2}$, or

$$
\begin{equation*}
3^{5 / 2} R \geqq 4 s, \tag{ii}
\end{equation*}
$$

as $\prod_{i} a_{i}=4 R \Delta$, where R is the circumradius. But the triangle of largest perimeter which can be inscribed in a given circle is equilateral and the inequality (ii) is certainly true then, so that (b) is established. In fact, 8 could be replaced by 12 in (b).

Also solved by Simeon Reich (Israel), T. Tamura (Japan), C. S. Venkataraman (India), A. W. Walker and the proposer.

The improved inequality for part (b) was conjectured by Walker and proved by Reich. It is interesting to note that aside from a solution to part (a) by L. Carlitz, all solvers and the proposer reside outside the United States of America.

Solution to Problem 2213:
American Mathematical Monthly, 77, (1970), 1109.

Quadrilaterals with the Nagel Property

E 2213 [1970, 79]. Proposed by H. Demir, Middle East Technical University, Turkey

Let us say that a (planar) polygon has the Nagel property if the lines through the vertices of the polygon and bisecting the perimeter of the polygon are concurrent. It is known that all triangles have the Nagel property and that not all quadrilaterals have the property. Determine the simple nondegenerate quadrilaterals that have the Nagel property.

Solution by the editor based on the proposer's solution. Let $A B C D$ be a quadrilateral having the Nagel property. Let each of the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ bisect the perimeter and pass through the Nagel point N. Let $A B=a, B C=b$, $C D=c, D A=d$. We may suppose $a+b \geqq c+d$ and $b+c \geqq a+d$. It then follows that C^{\prime} lies on segment $A B, B^{\prime}$ on $C D$, and A^{\prime} and D^{\prime} on $B C$ (Fig. 1). Set $B D^{\prime}=u$,

Fig 1
$A^{\prime} C=v, C B^{\prime}=w$, and $a+b+c+d=2 s$. Since $B C+C B^{\prime}=s=D^{\prime} C+C D$, then $D B^{\prime}=u$. Similarly $A C^{\prime}=v, B C^{\prime}=w$ and $D^{\prime} A^{\prime}=d$. We distinguish three cases.

CASE 1. $u \neq 0$ and $v \neq 0$. Thinking of $A A^{\prime}$ and $D D^{\prime}$ meeting at N, we see that a necessary and sufficient condition for $C C^{\prime}$ to pass through N is

$$
\frac{v}{w} \cdot \frac{b}{-v} \cdot \frac{A^{\prime} N}{N A}=-1
$$

by Menelaus' theorem applied to triangle $A B A^{\prime}$ cut by line $C N C^{\prime}$. Similarly, $B B^{\prime}$ passes through N if and only if

$$
\frac{-u}{b} \cdot \frac{w}{u} \cdot \frac{D N}{N D^{\prime}}=-1
$$

using triangle $D D^{\prime} C$ cut by $B N B^{\prime}$. Then

$$
\frac{D N}{N D^{\prime}}=\frac{b}{w}=\frac{A N}{N A^{\prime}} .
$$

Hence $A D$ is parallel to $D^{\prime} A^{\prime}$, and since these segments are also equal, it follows that $A D A^{\prime} D^{\prime}$ is a parallelogram. The diagonals $A A^{\prime}$ and $D D^{\prime}$ then bisect each other, so $A N=N A^{\prime}$ and $b=w$. But $b+w=s$, so $2 w=a-b+c+d=2 b$, from which we obtain

$$
b=\frac{a+c+d}{3} .
$$

Hence $A B C D$ is a trapezoid such that the longer of its two parallel bases is the arithmetic mean of its other three sides. Reversing the argument of this paragraph shows that every such trapezoid has the Nagel property. For example, the trapezoid with vertices $(0,0),(19,0),(6,24),(0,24)$ has $N=(7,12)$.

CASE 2. $u=v=0$. Then $a+b=c+d=s$ and $a+d=b+c=s$, so $2 a+b+d=2 c$ $+b+d$. Hence $a=c$ and $b=d$, so $A B C D$ is a parallelogram. Clearly every parallelogram has the Nagel property.

Case 3. $u=0$ and $v \neq 0$ (or vice versa). Let $A C$ and $B D$ meet at M (Fig. 2). Now $a+d=b+c=s$, so $d+v+w=C^{\prime} B+B C=C D+D A+A C^{\prime}=c+d+v$, whence $c=w$. Applying Menelaus' theorem to triangle $A B A^{\prime}$ cut by $C N C^{\prime}$ and to triangle $A A^{\prime} C$ cut by $B N M$, we obtain

$$
\begin{array}{ll}
\frac{b}{-v} \cdot \frac{A^{\prime} N}{N A} \cdot \frac{v}{c}=-1, & \text { so } \frac{A^{\prime} N}{N A}=\frac{c}{b}, \\
\frac{A N}{N A^{\prime}} \cdot \frac{-d}{b} \cdot \frac{C M}{M A}=-1, & \text { so } \frac{C M}{M A}=\frac{b}{d} \cdot \frac{A^{\prime} N}{N A}=\frac{b}{d} \cdot \frac{c}{b}=\frac{c}{d} .
\end{array}
$$

Since M divides side $C A$ of triangle $D A C$ in the ratio c / d of the adjacent sides, then $D M$ bisects angle D. Hence $\Varangle A D M=\Varangle M D C=\alpha$. Applying the law of

Fig. 2
cosines to triangles $A B D$ and $C B D$ and letting $B D=f$, we have

$$
\begin{aligned}
& a^{2}=d^{2}+f^{2}-2 d f \cos \alpha \\
& b^{2}=c^{2}+f^{2}-2 c f \cos \alpha
\end{aligned}
$$

so

$$
a^{2}-b^{2}=d^{2}-c^{2}-2 f(d-c) \cos \alpha
$$

Assuming $d \geqq c$, let $d=c+e$, so $b=c+v+e$ and $a=c+v$. Now $a^{2}-(a+e)^{2}=(c+e)^{2}$ $-c^{2}-2 e f \cos \alpha$, which simplifies to

$$
e f \cos \alpha=c e+a e+e^{2}
$$

If $e \neq 0$, then $\cos \alpha=(c+a+e) / f=(c+b) / f$, an impossibility since $c+b>f$. Hence $e=0$, so $c=d$ and $a=b$. The figure is therefore a kite. By symmetry, every kite has the Nagel property.

Three other correspondents mentioned the kite and the parallelogram.

Solution to Problem 2311:
American Mathematical Monthly, 79, (1972), 777.

The Compleat .Cyclic Quadrilateral
E 2311 [1971, 793]. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey

Prove that, if a quadrilateral $A_{1} A_{2} A_{3} A_{4}$ can be inscribed in a circle, then the (six) lines drawn from the midpoints of $A_{p} A_{q}$ perpendicular to $A_{r} A_{s}(p, q, r, s$ distinct) are concurrent.

Solution by Sister Stephanie Sloyan, Georgian Court College, Lakewood, N.J. Assume that the circle is the unit circle and identify the point A_{i} with the complex number a_{i} in the usual manner. Then the line from the midpoint of the segment $A_{p} A_{q}$ perpendicular to $A_{r} A_{s}$ is given by

$$
z-a_{r} a_{s} \bar{z}=\frac{1}{2}\left(a_{p}+a_{q}\right) \frac{a_{p} a_{q}-a_{r} a_{s}}{a_{p} a_{q}},
$$

and it is easily calculated that all six lines pass through the point $\frac{1}{2}\left(a_{1}+a_{2}+a_{3}+a_{4}\right)$. J. W. Clawson, The complete quadrilateral, Annals of Math. 20 (1918-1919), 232-261, calls this point the orthic center of the quadrilateral.

In a similar fashion one can show that the three lines joining the midpoint of $A_{p} A_{q}$ to that of $A_{r} A_{s}$ (p, q, r, s distinct) are each bisected by a point identified by Clawson as the mean center of the quadrilateral. Since the mean center is given by $\frac{1}{4}\left(a_{1}+a_{2}+a_{3}+a_{4}\right)$, it follows that it lies halfway between the orthic center and the circumcenter.

Also solved by Michael Goldberg, Leonard Goldstone, M. G. Greening (Australia), N. G. Gunderson, V. F. Ivanoff, Lew Kowarski, Harry Lass, O. P. Lossers (Netherlands), Rick Troxel, and the proposer.

Editorial Note. This theorem and its solution appear on page 59 of Yaglom, Complex Numbers in Geometry, Academic Press, 1968, along with many other interesting properties of cyclic quadrilaterals, cyclic pentagons, etc. (see pages 54-68). The point of concurrence of this problem is called the anticenter by Lucien Droussent (On a theorem of J. Griffiths, this Monthly, 54 (1947), 538-540). The anticenter N is the midpoint of the quadrilateral's Euler segment which joins its circumcenter O to the center H of the circle through the four orthocenters H_{m} of the triangles $A_{i} A_{j} A_{k}(\{i, j, k, m\}=$ $\{1,2,3,4\}$); these orthocenters form a quadrilateral congruent to the given one and symmetric to it in point N. Furthermore, the eight points A_{i} and H_{i} lie by fours on four distinct pairs of circles, each pair having N as center of symmetry.

The eight congruent nine-point circles for the four triangles $A_{i} A_{j} A_{k}$ and four triangles $H_{i} H_{j} H_{k}$ all pass through N, and their centers lie on another congruent circle centered at N. Thus N can be called the eight circle point and this last circle the eight point circle for the quadrilateral.

There are four distinct Simson lines for the eight points A_{m} with triangles $A_{i} A_{j} A_{k}$ and H_{m} with triangles $H_{i} H_{j} H_{k}$, and these Simson lines all pass through N. In fact, one can form 280 (180 of which are distinct) pedal circles (and lines) by taking any one of these eight points with the triangle formed by any three others, and all of them pass through N.

The nine point centers N_{m} for the four triangles $A_{i} A_{j} A_{k}$ form a quadrilateral homothetic to $H_{1} H_{2} H_{3} H_{4}$ in center O with ratio $\frac{1}{2}$, hence homothetic to $A_{1} A_{2} A_{3} A_{4}$ in center $G, 1 / 3$ of the way from O to H, with ratio $-\frac{1}{2}$. Similarly, the nine-point centers N_{m}^{\prime} for the triangles $H_{i} H_{j} H_{k}$ are homothetic to $H_{1} H_{2} H_{3} H_{4}$ in center $G^{\prime}, 2 / 3$ of the way from O to H, with ratio $-\frac{1}{2}$. Their common circumcircle has center N and radius half the given quadrilateral's circumradius. In a similar manner (see E $1740[1965,1026]$) the centroids G_{m} for the triangles $A_{i} A_{j} A_{k}$ form a quadrilateral homothetic to $H_{1} H_{2} H_{3} H_{4}$ in center O with ratio $1 / 3$, hence homothetic to $A_{1} A_{2} A_{3} A_{4}$ in center S (the mean center) $1 / 4$ of the way from O to H, with ratio $-\frac{1}{3}$. Its circumcenter is G. Similarly, the centroids G_{m}^{\prime} (whose circumcenter is G^{\prime}) for the triangles $H_{i} H_{j} H_{k}$ determine the other quadrisection point S^{\prime} of $O H$. Furthermore, N is the center of symmetry for the two quadrilaterals $N_{1} N_{2} N_{3} N_{4}$ and $N_{1}^{\prime} N_{2}^{\prime} N_{3}^{\prime} N_{4}^{\prime}$ and also for $G_{1} G_{2} G_{3} G_{4}$ and $G_{1}^{\prime} G_{2}^{\prime} G_{3}^{\prime} G_{4}^{\prime}$.

There are eight orthocentroidal circles (see Droussent) on the segments $G_{i} H_{i}$ and on $G_{i}^{\prime} H_{i}^{\prime}$ as diameters, pairs of which determine 16 distinct radical axes all passing through N, so N is the center of a circle orthogonal to all these eight circles.

We see that the Euler segment could well be renamed the seven point line (points O, S, G, N, G^{\prime}, $\left.S^{\prime}, H\right)$. With this notation, since points G and N trisect and bisect $O H$, the resemblance to the Euler line of a triangle is striking.

See also H. G. Forder, Higher Course Geometry, Cambridge University Press, 1949, 232-235, and R. A. Johnson, Modern Geometry, Houghton-Mifflin, 1929, pp. 169, 207, 243, and 251-253.

Solution to Problem 2312:
American Mathematical Monthly, 79, (1972), 778.

An Application of Ceva's Theorem

E 2312 [1971, 793]. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey

Let D be a point in the plane of a positively oriented triangle $A B C$ and let $A D$, $B D, C D$ intersect the respective opposite sides in A_{1}, B_{1}, C_{1}. If the oriented segments $\overline{B A}_{1}, \overline{C B}_{1}, \overline{A C}_{1}$ are equal $(=\delta)$, then D is uniquely determined and lies in the interior of $A B C$. (Notice the analogy between D and the Brocard point Ω.)

Solution by Michael Goldberg, Washington, D.C. Let the lengths of the sides of the triangle be a, b, c, where $a \leqq b \leqq c$. Then by Ceva's Theorem, we have the equation

$$
\begin{equation*}
(a-\delta)(b-\delta)(c-\delta)=\delta^{3} \tag{*}
\end{equation*}
$$

The left member of $\left(^{*}\right)$ is a function which decreases monotonically from $a b c$ at $\delta=0$ to zero at $\delta=a$, and the right member is a function which increases monotonically from zero at $\delta=0$. Hence the two functions are equal for exactly one real value of δ which lies in the interval $(0, a)$; it is easy to see also that there are no other real solutions to (*).

Note that if, instead, the segments $C A_{1}, B C_{1}$, and $A B_{1}$ are equal, then the value of δ is the same, but the transversals cross at another point E. The points D and E coincide only for the equilateral triangle.

Also solved by Bernhard Andersen (Denmark), Harold Donnelly, Jordi Dou (Spain), M.G. Greening (Australia), V. F. Ivanoff, and the proposer.

Editor's Comment. L. Goldstone located a complete discussion of this point, its isotomic conjugate, and their properties in Peter Yff, An analogue of the Brocard Points, this Monthly 70 (1963), 495-501.

Solution to Problem 2363:
American Mathematical Monthly, 80, (1973), 694.

On Spherical Triangles

E 2363 [1972,663]. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey

Characterize pairs of spherical triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ for which $A^{\prime}=a$, $B^{\prime}=b, C^{\prime}=c, A=a^{\prime}, B=b^{\prime}, C=c^{\prime}$.

Solution by M. G. Greening, University of New South Wales, Australia. For any spherical triangle $A^{\prime} B^{\prime} C^{\prime}$ we have:

$$
\begin{equation*}
\cos a^{\prime}=\cos b^{\prime} \cos c^{\prime}+\sin b^{\prime} \sin c^{\prime} \cos A \tag{1}
\end{equation*}
$$

and the two others following from the permutations $(a, b, c),(a, c, b)$. So

$$
\begin{equation*}
\cos A=\cos B \cos C+\sin B \sin C \cos a, \tag{2}
\end{equation*}
$$

and so on. But from consideration of the polar triangle of $A B C$,

$$
\begin{equation*}
\cos A=-\cos B \cos C+\sin B \sin C \cos a . \tag{3}
\end{equation*}
$$

Then $\cos B \cos C=\cos C \cos A=\cos A \cos B=0$ and we have, say, $A=B=\pi / 2$, yielding $a=b=\pi / 2$ from (2). Also $\cos C=\cos c$, which must give $C=c$ as $c>0$, $C<\pi$. Consequently

$$
A^{\prime}=B^{\prime}=a^{\prime}=b^{\prime}=\pi / 2 \text { and } c^{\prime}=C^{\prime}=c=C,
$$

so that the two triangles are necessarily, congruent.
Also solved by Michael Goldberg, Lew Kowarski, Clellie Oursler \& Eric Sturley, and the proposer.

Solution to Problem 2462:

American Mathematical Monthly, 92, (1985), 360.

The Extended Erdős-Mordell Inequality

E 2462 [1974, 281]. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let P be a point interior to the triangle $A_{1} A_{2} A_{3}$. Denote by R_{i} the distance from P to the vertex A_{i}, and denote by r_{i} the distance from P to the side a_{t} opposite to A_{t}. The Erdős-Mordell inequality asserts that

$$
R_{1}+R_{2}+R_{3} \geqslant 2\left(r_{1}+r_{2}+r_{3}\right) .
$$

Prove that the above inequality holds for every point P in the plane of $A_{1} A_{2} A_{3}$ when we make the interpretation $R_{i} \geqslant 0$ always and r_{i} is positive or negative depending on whether P and A_{i} are on the same side of a_{i} or on opposite sides.

Editorial note: Professor Clayton W. Dodge, Department of Mathematics, University of Maine refereed the "solutions" submitted to this problem in 1974 and found that there were no solutions. Since that time Professor Dodge himself has solved the problem. His solution appears in Crux Mathematicorum, vol. 10, no. 9, November 1984, pages 274-281.

the extended eriös-mordell ineauality

CLAYTON W. DODGE

Ten years ago The American Mathematical Monthly published the following Problem E 2462 [81 (1974) 281], which is an extension of the earlier Problem 3740 proposed by Paul Erdös [42 (1935) 396] and first solved by L.J. Mordell [44 (1937) 252-254]:
"E 2462. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let P be a point interior to the triangle $A_{1} A_{2} A_{3}$. Denote by R_{i} the distance from P to the vertex A_{i}, and denote by r_{i} the distance from P to the side a_{i} opposite to A_{i}. The Erdös-Mordell inequality asserts that

$$
R_{1}+R_{2}+R_{3} \geq 2\left(r_{1}+r_{2}+r_{3}\right) .
$$

Prove that the above inequality holds for every point P in the plane of $A_{1} A_{2} A_{3}$ when we make the interpretation $R_{i} \geq 0$ always and r_{i} is positive or negative depending on whether P and A_{i} are on the same side of a_{i} or on opposite sides."

It was my pleasure in 1974 to referee the solutions to this problem. Curiously, each of the solvers started with the solution to the original Erdös inequality given by Kazarinoff [1] and modified it for the case where r_{1}, r_{2}, or r_{3} is negative. Each made the same error, invalidating the proof. Curiously, Kazarinoff stated that his proof "holds even if P lies outside the triangle, provided it remains inside the circumcircle", but the Elementary Problem Department editors could not see that such an extension of the proof was possible without committing the same error the other solvers had made. We outline Kazarinoff's proof and describe the error. Since we shall rely heavily on this proof, our outline is quite complete. It is interesting to note that, if Kazarinoff's statement could have been verified then, a proof would have been published in 1975.

In Demir's notation, Kazarinoff let P lie within angle A_{1} and then he reflected triangle $A_{1} A_{2} A_{3}$ in the bisector $A_{1} T$ of angle A_{1} into triangle $A_{1} A_{2}^{\prime} A_{3}^{\prime}$, as shown in Figure 1. Noting that the bisector of angle A_{1} also bisects the angle between the altitude $A_{1} D$ and the circumradius $O A_{1}$, he used a theorem of Pappus which states that the area of the parallelogram whose adjacent sides are $A_{1} A_{2}^{\prime}$ and $A_{1} P$ plus the area of the parallelogram whose adjacent sides are $A_{1} P$ and $A_{1} A_{3}^{\prime}$ is equal to the area of the parallelogram erected on $A_{2}^{\prime} A_{3}^{\prime}$ whose sides emanating from A_{2}^{\prime} and A_{3}^{\prime} are equal, as vectors, to $\overrightarrow{A_{1}} P$. Since $A_{1} P=R_{1}$, Kazarinoff obtained the first of equalities (1), and the other two are obtained in the same way when P lies within angles A_{2} and A_{3} :

Figure 1

$$
\left\{\begin{array}{l}
a_{1} R_{1} \cos \left(O A_{1} P\right)=a_{2} r_{3}+a_{3} r_{2} \tag{1}\\
a_{2} R_{2} \cos \left(O A_{2} P\right)=a_{3} r_{1}+a_{1} r_{3} \\
a_{3} P_{3} \cos \left(O A_{3} P\right)=a_{1} r_{2}+a_{2} r_{1}
\end{array}\right.
$$

From this follows, when P is an interior point of the triangle,

$$
\left\{\begin{align*}
R_{1}+R_{2}+R_{3} & \geq R_{1} \cos \left(O A_{1} P\right)+R_{2} \cos \left(O A_{2} P\right)+R_{3} \cos \left(O A_{3} P\right) \tag{2}\\
& =\left(\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}\right) r_{1}+\left(\frac{a_{3}}{a_{1}}+\frac{a_{1}}{a_{3}}\right) r_{2}+\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) r_{3} \\
& \geq 2\left(r_{1}+r_{2}+r_{3}\right)
\end{align*}\right.
$$

because $x+1 / x \geq 2$ when $x>0$.
Equations (1) hold for all locations of P, provided Demir's sign convention is observed. Then also the first two lines of (2) hold. We shall make use of this in our proofs later in this paper, so a proof is presented.

Let P lie outside angle A_{1} and outside angle A_{2} but inside angle A_{3} and inside the circumcircle of triangle $A_{1} A_{2} A_{3}$, as shown in Figure 2. Using the notation of Figure 1, we see that the parallelogram on side $A_{2} A_{3}$ now is the difference between those on sides $A_{1} A_{2}^{\prime}$ and $A_{1} A_{3}$. Accordingly,

- 276 -

$$
a_{1} R_{1} \cos \left(O A_{1} P\right)=-a_{2} r_{3}+a_{3} r_{2},
$$

where we take the r_{i} all nonnegative; similarly,

$$
a_{2} R_{2} \cos \left(O A_{2} P\right)=a_{3} r_{1}-a_{1} r_{3},
$$

and we have as before

$$
a_{3} R_{3} \cos \left(0 A_{3} P\right)=a_{1} r_{2}+a_{2} r_{1}
$$

since P lies within angle A_{3}. Thus equations (1) are true for this case if we observe Demir's sign convention. That they also hold in other cases is not needed here. Since the cosines of the angles $0 A_{i} P$ are all still positive because P iies inside the circumcircie, the first two lines of (2) both still hold. Only the third line of (2) is in doubt. In fact, Kazarinoff's argument fails at this point, as explained in the next paragraph.

The error in the submitted solutions to Problem E 2462 occurred when one of the r_{i}, say r_{3}, is negative. Then we still have

$$
\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}} \geq 2
$$

but, since $r_{3}<0$, the inequality reverses to give

$$
\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right)_{r_{3}} \leq 2 r_{3},
$$

rendering the argument inconclusive. The editors could find no simple remedy for this flaw since the extended theorem requires that either one or two of the distances r_{i} be negative. We wrote to those who had submitted solutions, and Leon Bankoff and I corresponded for perhaps a year in attempting to put together a satisfactory proof. Over the next nine years I returned to the problem from time to time, fascinated by its challenge.

Two cases were disposed of almost immediately.
Case 1. Point P lies inside the angle vertical to a vertex angle.
For example, let P lie inside the angle vertical to A_{1}, as shown in Figure 3 . Then r_{2} and r_{3} are to be taken negative and we must prove that

$$
R_{1}+R_{2}+R_{3} \geq 2\left(r_{1}-r_{2}-r_{3}\right),
$$

where the r_{i} have all been taken nonnegative and we have inserted the appropriate negative signs. Because R_{2} and r_{1} are hypotenuse and leg of a right triangle, we have

$$
R_{2} \geq r_{1}, \quad \text { and similarly } \quad R_{3} \geq r_{1}
$$

Thus

$$
R_{1}+R_{2}+R_{3} \geq R_{2}+R_{3} \geq r_{1}+r_{1} \geq 2\left(r_{1}-r_{2}-r_{3}\right) .
$$

Figure 4

Case :. Point P is interior to an angle of the triangle, but far enough outside the triangle so that a foot F_{i} of a distance r_{i} lies outside the triangle. As shown in Figure 4, we take P lying within angle A_{1} and far enough outside the triangle so that, say, the foot F_{3} of distance r_{3} lies outside the triangle. Then r_{1} is taken negative. Choose point A_{2}^{\prime} so that F_{3} is the midpoint of segment $A_{2} A_{2}^{\prime}$. Then $P A_{2}=P A_{2}^{\prime}$ and the three distances R_{i} for triangle $A_{1} A_{2} A_{3}$ are the same as those for triangle $A_{1} A_{2}^{\prime} A_{3} . A l s o r_{2}$ and r_{3} remain unchanged, and only r_{1} changes to r_{1}^{1}. If, as pictured, P lies outside triangle $A_{1} A_{2}^{\prime} A_{3}$, then $\left|r_{1}\right|>|r i|$ and $-r_{1}<-r_{1}^{\prime}$ since they both must be taken negative. If P lies inside triangle $A_{1} A_{2}^{1} A_{3}$, we get $-r_{1}<0<r_{1}$. So in either case, using the appropriate sign, we have

$$
\pm r_{1}^{\prime}+r_{2}+r_{3} \geq-r_{1}+r_{2}+r_{3} .
$$

It therefore suffices to prove the extended theorem in the case where all three feet F_{i} of the distances r_{i} lie inside the triangle's sides or at its vertices, and when this occurs P lies inside the circumcircle.

A comprehensive computer run showed the theorem apparently true for $a l l$ points inside the circumcircle, so all that remained was to prove the theorem when the point P lies outside the triangle and inside the circumcircle. Moreover, Case 2 eliminates a portion of even that region (when, say, P lies inside triangle $A_{1} A_{2}^{\prime} A_{3}$, for the original Erdös inequality applies to that triangle). Let 0 be diametrically opposite verm tex A_{1} on the circumcircle of triangle $A_{1} A_{2} A_{3}$, as shown in Figure 5. Without loss of generality, we

Figure 5 must prove the theorem whenever P lies within or on triangle $A_{2} A_{3} D$. We may assume that $A_{2}<90^{\circ}$ and $A_{3}<90^{\circ}$ since otherwise the indi-
cated region is empty. In this region, since r_{1} is to be given a negative sign, we must prove

$$
R_{1}+R_{2}+R_{3}+2 r_{1} \geq 2 r_{2}+r_{3} .
$$

If Kazarinoff's statement that his proof holds whenever P lies inside the circumcircle had been substantiated, then the proof of Problem E 2462 would have been complete at this point. The following cases, all developed in the past year, do complete the desired proof.

Case 3. Point P lies in triangle $A_{2} A_{3} D$ and at least one of angles A_{2} and A_{3} does not exceed 30°.

Referrina to Figure 6 , let $A_{2} \leq 30^{\circ}$, so that $\sin A_{2} \leq 1 / 2$. If $\angle A_{3} A_{2} P=\varepsilon$, then

$$
r_{3}=R_{2} \sin \left(A_{2}+\varepsilon\right), \quad r_{1}=R_{2} \sin \varepsilon,
$$

and

$$
\begin{aligned}
\sin \left(A_{2}+\varepsilon\right)-\sin \varepsilon & =\sin A_{2} \cos \varepsilon+\cos A_{2} \sin \varepsilon-\sin \varepsilon \\
& =\sin A_{2} \cos \varepsilon+\sin \varepsilon\left(\cos A_{2}-1\right) \\
& \leq \sin A_{2} \leq \frac{1}{2} .
\end{aligned}
$$

Now

$$
R_{2}=P A_{2}>P A_{2}\left\{2 \sin \left(A_{2}+\varepsilon\right)-2 \sin \varepsilon\right\}=2 r_{3}-2 r_{1} .
$$

Hence

$$
R_{1}+R_{2}+R_{3}+2 r_{1} \geq r_{2}+\left(2 r_{3}-2 r_{1}\right)+r_{2}+2 r_{1}=2 r_{2}+2 r_{3} .
$$

Case 4. Point P lies inside the largest angle of the triangle.
Let P lie in triangle $A_{2} A_{3} D$ and suppose $A_{1} \geq A_{2} \geq A_{3}$. Then we have $a_{1} \geq a_{2} \geq a_{3}$ and $r_{1} \leq r_{2}$, and also

$$
2 \leq U \equiv \frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}} \leq V \equiv \frac{a_{3}}{a_{1}}+\frac{a_{1}}{a_{3}} .
$$

Hence, if for some number N we have $U r_{1}=V r_{2}+N$, then

$$
U r_{1} \geq U r_{2}+N
$$

and, since also

$$
(U-2) r_{1} \leq(U-2) r_{2},
$$

we may subtract to get

$$
2 r_{1} \geq 2 r_{2}+N .
$$

Therefore, since we have, by the first two lines of (2),

$$
R_{1}+R_{2}+R_{3}+\left(\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}\right) r_{1} \geq\left(\frac{a_{3}}{a_{1}}+\frac{a_{1}}{a_{3}}\right) r_{2}+\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) r_{3}
$$

it follows that

$$
R_{1}+R_{2}+R_{3}+2 r_{1} \geq 2 r_{2}+\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) r_{3} \geq 2 r_{2}+2 r_{3} .
$$

Now only one case remains to be settled, but first we prove a pair of lemmas.
LEMMA 1. The function

$$
f(x)=1-\cos x-\frac{1}{2} \sin \left(x-15^{\circ}\right)
$$

has a minimum at approximately ($29^{\circ}, 0.044$), so $f(x)>0$ for all x in the interval $\left[15^{\circ}, 90^{\circ}\right]$. (See Figure i°)

We have

$$
f^{\prime}(x)=\sin x-\frac{1}{2} \cos \left(x-15^{\circ}\right),
$$

which vanishes when

$$
\tan x=\frac{\cos 15^{\circ}}{2-\sin 15^{\circ}}
$$

that is, when $x \approx 29.019466^{\circ}$, at which point $f(x) \approx 0.004419>0$. Since

$$
f^{\prime \prime}(x)=\cos x+\frac{1}{2} \sin \left(x-15^{\circ}\right)>0,
$$

Figure 7
the critical point is a minimum.
LEMMA 2. If $1 \leq x \leq 2$, then $g(x)=x+1 / x \leq 2.5$.
Clearly $g^{\prime}(x) \geq 0$ in the given interval, so $g(x) \leq g(2)=2.5$. \square
Our last case takes P inside the triangle $A_{2} A_{3} D$ of Figure 5 , where $A_{2}>30^{\circ}$ and $A_{3}>30^{\circ}$ (by Case 3), and A_{1} is not the largest angle of the triangle (by case 4). We may without loss of generality assume that A_{2} is the largest angle. Since we need not consider $A_{2} \geq 90^{\circ}$ (by Figure 5), we have the following case:

Case 5. Point P lies inside triangle $A_{2} A_{3} D$, and $30^{\circ}<A_{3} \leq A_{2}$ and $A_{1} \leq A_{2}<90^{\circ}$.
(See Figure 8.)
Let $\delta=\angle O A_{3} P$. Since $A_{3}>30^{\circ}$, we have $A_{1}+A_{2}<150^{\circ}$ and $A_{1}<75^{\circ}$. So $\angle A_{3} O A_{2}<150^{\circ}$ and $\angle O A_{3} A_{2}>15^{\circ}$. From

$$
\frac{a_{2}}{a_{3}}=\frac{\sin A_{2}}{\sin A_{3}} \quad \text { and } \quad 30^{\circ}<A_{3} \leq A_{2}<90^{\circ} \text {, }
$$

we get

$$
1 \leq \frac{a_{2}}{a_{3}}<\frac{\sin 90^{\circ}}{\sin 30^{\circ}}=2
$$

and 50 , by Lemma 2 ,

$$
\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}<2.5
$$

Now $r_{1} \leq R_{3} \sin \left(\delta-15^{\circ}\right)$, so, by Lemma 1 ,

$$
R_{3}(1-\cos \delta) \geq \frac{1}{2} R_{3} \sin \left(\delta-15^{\circ}\right) \geq \frac{1}{2} r_{1}
$$

Then

$$
\begin{aligned}
R_{1}+R_{2}+R_{3}+2 r_{1} & =R_{1}+R_{2}+R_{3} \cos \delta+R_{3}(1-\cos \delta)+2 r_{1} \\
& \geq R_{1}+R_{2}+R_{3} \cos \delta+2 \cdot 5 r_{1} \\
& \geq R_{1} \cos \left(0 A_{1} P\right)+R_{2} \cos \left(0 A_{2} P\right)+R_{3} \cos \delta+\left(\frac{a_{2}}{a_{3}}+\frac{a_{3}}{a_{2}}\right) r_{1} \\
& =\left(\frac{a_{3}}{a_{1}}+\frac{a_{1}}{a_{3}}\right) r_{2}+\left(\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right) r_{3} \quad \text { by (2) } \\
& \geq 2\left(r_{2}+r_{3}\right)
\end{aligned}
$$

and we are at last finished. The proof of Problem E 2462 is complete.
Finally, we use the extended Erdös-Mordell inequality for triangles to get, as a corollary, a corresponding result for convex quadrilaterals.

Let $A_{1} A_{2} A_{3} A_{4}$ be a convex quadrilateral, and let P be any point in its plane.

We set $P A_{i}=R_{i}>0$ and denote the signed distance between P and line $A_{i} A_{j}$ by $r_{i j}$, the sign being determined by Demir's convention for any triangle of which $A_{i} A_{j}$ is a side. Thus (see Figure 9), r_{12} is associated with triangles $A_{1} A_{2} A_{3}$ and $A_{1} A_{2} A_{4}$ and has the same sign for both triangles regardless of the location of point P; and similar statements can be made about r_{23},
 $r_{3 u}$, and r_{41}. The distance $\left|r_{13}\right|$, on the other hand, is associated with triangles $A_{1} A_{2} A_{3}$ and $A_{1} A_{3} A_{4}$; and if r_{13} is the signed distance associated with triangle $A_{1} A_{2} A_{3}$, then $-r_{13}$ is the signed distance associated with triangle $A_{1} A_{3} A_{4}$. Similarly, if r_{24} corresponds to triangle $A_{1} A_{2} A_{4}$, then $-r_{24}$ corresponds to triangle $A_{2} A_{3} A_{4}$. Our inequality extended to quadrilaterals reads as follows:

COROLLARY. If $A_{1} A_{2} A_{3} A_{4}$ is a convex quadrilateral, P is any point in its plane, and the distances R_{i} and $r_{i j}$ are as defined above, then

$$
\begin{equation*}
3\left(R_{1}+R_{2}+R_{3}+R_{4}\right) \geq 4\left(r_{12}+r_{23}+r_{34}+r_{41}\right) . \tag{3}
\end{equation*}
$$

Proof. We apply the extended Erdös-Mordell inequality successively to triangles $A_{1} A_{2} A_{3}, A_{1} A_{2} A_{4}, A_{1} A_{3} A_{4}$, and $A_{2} A_{3} A_{4}$:

$$
\begin{aligned}
& R_{1}+R_{2}+R_{3} \geq 2\left(r_{12}+r_{23}+r_{13}\right), \\
& R_{1}+R_{2}+R_{4} \geq 2\left(r_{12}+r_{24}+r_{41}\right), \\
& R_{1}+R_{3}+R_{4} \geq 2\left(r_{34}+r_{41}-r_{13}\right), \\
& R_{2}+R_{3}+R_{4} \geq 2\left(r_{23}+r_{34}-r_{24}\right),
\end{aligned}
$$

and adding these four inequalities yields (3).

REFERENCE

1. D.K. Kazarinoff, "A Simple Proof of the Erdös-Mordell Inequality for Triangles", Michigan Math. J., 4 (1957) 97-98.

Mathematics Department, University of Maine, Orono, Maine 04469.

Solution to Problem 2625:

American Mathematical Monthly, 85, (1978), 121.

A Property of Conics

E 2625 [1976, 812]. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey
Let $A_{i}(i \equiv 0,1,2,3 \bmod 4)$ be four points on a circle Γ. Let t_{i} be the tangent of Γ at A_{i} and let p_{t} and q_{1} be the lines parallel to t_{1} passing through the points A_{i-1} and A_{t+1} respectively. If $B_{i}=t_{t} \cap t_{t+1}$, $C_{t}=p_{1} \cap q_{1+1}$ show that the four lines $B_{1} C_{t}$ have a point in common.

Solution by Jordi Dou, Barcelona, Spain. We shall prove a more general result.
Theorem. Let K be a non-degenerate conic in a real projective plane, $A_{1}(0 \leqq i \leqq 3)$ be four distinct points on K and r be a line such that $A_{1} \notin r$. Let t_{i} be the tangent of K at $A_{i}, B_{1}=t_{1} \cap t_{i+1}, T_{1}=t_{1} \cap r$, $p_{t}=T_{i} A_{t-1}, q_{t}=T_{i} A_{t+1}$ and $C_{i}=p_{i} \cap q_{t+1}$. Then the four lines $B_{i} C_{t}$ are concurrent.

Proof. Let π be the polarity with respect to K and $S=A_{0} A_{2} \cap A_{1} A_{3}$. Put $s=\pi(S)$ and $R=\pi(r)$. Let σ be the harmonic homology with center S and axis s. Thus we have $\sigma^{2}=1$ and $\sigma\left(A_{t}\right)=A_{t+2}$. We claim that the point $Q=\sigma(R)$ lies on each of the lines $B_{1} C_{1}$.

Note that π interchanges S and s and consequently σ and π commute. Therefore, $\tau=\sigma \pi=\pi \sigma$ is also a polarity. We have

$$
\begin{aligned}
& \tau\left(t_{t}\right)=\sigma \pi\left(t_{t}\right)=\sigma\left(A_{t}\right)=A_{t+2}, \\
& \tau\left(t_{t+1}\right)=A_{t+3}=A_{t-1}, \\
& \tau(r)=\sigma \pi(r)=\sigma(R)=Q
\end{aligned}
$$

and consequently the two triangles $T_{t+1} T_{t} B_{t}$ and $A_{t+2} A_{t-1} Q$ are polar to each other with respect to K. By Chasles' theorem (see H. S. M. Coxeter, The Real Projective Plane, Cambridge University Press, 1961, p. 71) this is a pair of Desargues' triangles. Hence the lines $T_{t+1} A_{t+2}=q_{t+1}, T_{t} A_{t-1}=p_{t}$ and $B_{i} Q$ are concurrent at $C_{i}=p_{i} \cap q_{i+1}$. Therefore we see that Q lies on the lines $B_{i} C_{i}$ as claimed.

The statement of the problem is obtained by choosing $K=\Gamma$ and $r=$ line at infinity.
Also solved by L. Kuipers (Switzerland), and the proposer.

Solution to Problem 3135:
American Mathematical Monthly, 95, (1988), 764.

Matching Distances to Vertices

E 3135 [1986, 215]. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

For a scalene triangle $A B C$ inscribed in a circle, prove that there is a point D on the circle whose distance from the opposite vertex is the sum of its distances from the other two vertices, and construct D with ruler and compass.

Solution I by J. Leech, University of Stirling, Scotland. Suppose BC > AC > AB. Perturb $B A C$ into an isosceles triangle $B X Y$ by determining X on the ray $B A$ and Y on $B C$ such that $B X=B Y=A C$. The circumcircle of $B X Y$ meets the circumcircle of $B A C$ at the required point D. To prove D has the required property, extend $A D$ to a point Z such that $D Z=D C$. Then triangle $D Z C$ is similar to triangle $B X Y$, because the angles at D and B are both supplementary to angle $A D C$. Consequently, triangle $D B Y$ is congruent to triangle $Z A C$, since $A C=B Y$ by construction, the angles at A and B are equal and angle $B D Y=$ angle $B X Y=$ angle $D Z C$. Hence $D B=Z A=D A+D C$.

Solution II by P. Tzermias (student), University of Patras, Greece. Let a, b, c be the lengths of the sides opposite A, B, C, and let x, y, z be the lengths of $D A, D B, D C$. We seek point D such that $y=x+z$. By Ptolemy's Theorem, $a x+c z=b y$. Substituting for y yields $x / z=(c-b) /(b-a)$. Thus, D lies on the "Circle of Apollonius" determined by A and C using the ratio $(c-b) /(b-a)$. This circle has a standard construction (see N. Altshiller-Court, College Geometry, 1952, p. 15).

Editorial comments. Since $c-b$ and $b-a$ must have the same sign, D must lie on the arc cut by the side of intermediate length. Consequently, if $A B C$ is isosceles, then D can only be the vertex common to the two equal sides. On the other hand, if $A B C$ is equilateral, then D can be any point on the circumference; Leech's two circles then coincide.

Several solvers noted that the existence of D follows from the Intermediate Value Theorem. If D on the arc opposite B is close to the shortest side of $A B C$, then its distance to B is less than $D A+D C$, but if D is close to the longest side, then $D B>D A+D C$.

Other solutions independent of Ptolemy's Theorem were submitted by J. Dou (Spain), L. Kuipers (Switzerland), and by P. L. Hon (Hong Kong).
E. Morgantini (Italy) submitted a paper entitled "Una Quartica Bicircolare Della Geometria Del Triangolo" making reference to this problem.

In addition to the solvers mentioned above, correct solutions were received from S. Arslanagić (Yugoslavia), A. Bager, H. Eves, J. Fukuta (Japan), H. Kappus (W. Germany), O. P. Lossers (Netherlands), J. P. Robertson, J. S. Robertson, V. Schindler (E. Germany), R. A. Simon (Chile), B. A. Troesch, M. Vowe (Switzerland), and the proposer.

Solution to Problem 3164:
American Mathematical Monthly, 95, (1988), 660.
Elliptical Tangents
E 3164 [1986, 566]. Proposed by Huseyn Demir, Middle East Technical University, Ankara, Turkey.

Let s, t be the lengths of the tangent line segments to an ellipse from an exterior point. Find the extreme values of the ratio s / t.

Solution by Gene Arnold and Vaclav Konecny, Ferris State College, Big Rapids, MI. Consider an ellipse as the normal projection of a circle, from one plane to another in \mathbf{R}^{3}. Clearly tangents project to tangents and the minor axis of the ellipse is perpendicular to the intersection of the two planes. Since the ratio of any two intersecting tangents to the circle is 1 , the extreme ratios of two such tangents to the ellipse will be attained when the ratio of one tangent to the circle to its projection is minimum while the other ratio is maximum. This happens when the projected tangents are respectively parallel to and perpendicular to the intersection of the planes. Thus the extreme ratios are those of the major axis to the minor axis, and its reciprocal.

Editorial comment. M. S. Klamkin suggested study of the more difficult problem of the extreme values of $|s-t|$.

Also solved by M. Barr (Canada), J. C. Binz (Switzerland), J. M. Cohen, J. Dou (Spain), J. Fukuta (Japan), P. L. Hon (Hong Kong), L. R. King, M. S. Klamkin (Canada), K.-W. Lau (Hong Kong), O. P. Lossers (The Netherlands), M. Pachter (South Africa), K. Schilling, J. H. Steelman, P. Tracy, D. B. Tyler, C. Vandermee (The Netherlands), and the proposer. One incorrect solution was received.

Solution to Problem 3422:
American Mathematical Monthly, 99, (1992), 679.

Tangents Intersect on the Axis of Involution

E 3422 [1991, 158]. Proposed by H. Demir and C. Tezer, Middle East Technical University, Ankara, Turkey.

Suppose F and F^{\prime} are points situated symmetrically with respect to the center of a given circle, and suppose S is a point on the circle not on the line $F F^{\prime}$. Let P and P^{\prime} be the second points of intersection of $S F$ and $S F^{\prime}$ respectively with the circle. If the tangents to the circle at P and P^{\prime} intersect at T, prove that the perpendicular bisector of $F F^{\prime}$ passes through the midpoint of the line segment $S T$.

Solution I by Jean-Pierre Grivaux, Paris, France. We work in the complex plane, with lower-case letters denoting the complex representations of points designated by the corresponding upper-case letters. We may assume that the circle is $\mathbf{U}=$ $\{Z:|z|=1\}$ and that the points F and F^{\prime} are on the real axis.

If $A, B \in \mathbf{U}$, then Z is on the line through A and B if and only if $z+a b \bar{z}=$ $a+b$, which we shall refer to as equation $\mathscr{E}_{a b}$. To derive this equation, note that
the line is the set of Z whose numerical representation satisfies $z=a+r(b-a)$, where r is real. Conjugating this and using $\bar{a}=1 / a$ and $\bar{b}=1 / b$ yields $\bar{z}=\bar{a}+$ $r(\bar{b}-\bar{a})$, which when multiplied by $a b$ and added to the first equation yields $\mathscr{E}_{a b}$. This form of $\mathscr{E}_{a b}$ remains valid when $a=b$.

Since $\mathscr{E}_{p p}$ and $\mathscr{E}_{p^{\prime} p^{\prime}}$ are the equations of the tangents to \mathbf{U} at P and P^{\prime}, we have $t+p^{2} \bar{t}=2 p$ and $t+\left(p^{\prime}\right)^{2} t=2 p^{\prime}$. Solving for t by eliminating \bar{t} (when $p \neq p^{\prime}$) yields $t=2 /\left(\bar{p}+\overline{p^{\prime}}\right)$. Note that $p+p^{\prime} \neq 0$ because s is not real. The midpoint of $S T$ is Z, where

$$
z=\frac{1}{2}(s+t)=\frac{1}{2}\left(s+\frac{2}{\bar{p}+\overline{p^{\prime}}}\right),
$$

and the result we want to prove is $z+\bar{z}=0$, which by the above is

$$
\left(s+\frac{2}{1 / p+1 / p^{\prime}}\right)+\left(\frac{1}{s}+\frac{2}{p+p^{\prime}}\right)=0
$$

This is equivalent by algebraic manipulation to

$$
\begin{equation*}
\left(-\frac{2 s}{1+s^{2}}\right)\left(1+p p^{\prime}\right)=p+p^{\prime} \tag{*}
\end{equation*}
$$

Sine F and F^{\prime} belong to the lines $P S$ and $P^{\prime} S$ respectively, f and $f^{\prime}(=-f)$ satisfy the equations $\mathscr{E}_{p s}$ and $\mathscr{E}_{p^{\prime} s}$ respectively, namely $(f)(1+p s)=p+s$ and $(-f)\left(1+p^{\prime}\right)=p^{\prime}+s$, where we use the fact that $\bar{f}=f$. Elimination of f from these two equations produces the desired equality ($*$).

Solution II by the proposers. We exclude the case in which F and F^{\prime} coincide. Let K be the point diametrically opposite S. Let S^{\prime} be the additional point where the line through S parallel to $F F^{\prime}$ intersects the circle (S^{\prime} may coincide with S). The lines $S S^{\prime}, S P, S K, S P^{\prime}$ form a harmonic pencil, as the center of the circle bisects $F F^{\prime}$. Consequently, for any point X on the circle, the lines $X S^{\prime}, X P, X K, X P^{\prime}$ form a harmonic pencil. Choosing $X=P$ or $X=P^{\prime}$ in particular, we find that the pencils $P S^{\prime}, P T, P K, P P^{\prime}$ and $P^{\prime} S^{\prime}, P^{\prime} P, P^{\prime} K, P^{\prime} T$ are harmonic. Since the line $P P^{\prime}$ is common to both pencils, the points S^{\prime}, K, T lie on a line which is clearly perpendicular to $F F^{\prime}$. Hence the perpendicular bisector of $F F^{\prime}$ bisects $S T$.

Editorial comment. Most solvers used straightforward analytic geometry and brute force calculation to prove the result. Several used synthetic Euclidean geometry. H. Kappus gave another proof using complex numbers. O. P. Lossers gave another proof using projective geometry. A nice approach by J. Dou uses a classical property of projective involutions of a conic (involutions sending a conic to itself and preserving cross ratios). We briefly describe this and its relationship to Grivaux's solution, using the notational conventions of that solution.

The mapping $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ given by $\sigma(x)=-x$ yields a projective involution of the real line which extends to a projective involution of the real projective line \mathbf{P} by defining $\sigma(\infty)=\infty$. With point S given on the unit circle \mathbf{U}, we define $\pi: \mathbf{P} \rightarrow \mathbf{U}$ by letting $\pi(X)$ be the point where the line joining S to $X \in \mathbf{P}$ again intersects \mathbf{U}. In particular, π applied to the point at infinity is the other point of intersection with \mathbf{U} of the line through S parallel to the real axis. It then follows that the mapping $g: \mathbf{U} \rightarrow \mathbf{U}$ given by $g=\pi \circ \sigma \circ \pi^{-1}$ is a projective involution of \mathbf{U}.

The numbers corresponding to the fixed points of g are $-s$ and $-\bar{s}$, since σ fixes 0 and ∞. Now a classical result of projective geometry implies that for each $P \in \mathbf{U}$, the tangent lines of \mathbf{U} at P and $g(P)$ intersect on the line \mathbf{l} through the fixed points of g. Since T is the intersection of the tangent lines at P and $P^{\prime}=g(P)$, we see that T is on the line \mathbf{l}, and it is then obvious that the midpoint of $S T$ is on the pure-imaginary axis, as was to be proved.

It is easy to calculate that $\pi(X)$ is represented by $(x-s) /(1-x s)$ for $x \in \mathbb{R}$, and $g(P)$ is represented by $(\lambda-p) /(1-\lambda p)$ for $p \in \mathbf{U}$, where $\lambda=$ $-2 s /\left(1+s^{2}\right)$. In fact, λ is real (or ∞) and it represents the intersection of the tangent lines at the fixed points of g. Indeed, the relation ($*$) in Grivaux's solution expresses the fact that λ satisfies the equation $\mathscr{E}_{p p^{\prime}}$; thus the line through P and P^{\prime} always passes through Λ. This shows that the involution g is obtained by sending each point $P \in \mathbf{U}$ to the other point where \mathbf{U} intersects the line through Λ and P. The line \mathbf{I} (the "axis" of the involution g) is the polar of Λ with respect to \mathbf{U}.

For a detailed discussion of involutions of conics, see H. F. Baker, An Introduction to Plane Geometry (Cambridge University Press, 1943), Chapter IX, or M. Berger, Geometry II (Springer, 1987), Section 16.3. In Berger's book the above point λ is called the "Frégier point" of the involution g.

Solved by 26 readers (including those cited) and the proposers.

Solution to Problem 3469:
American Mathematical Monthly, 100, (1993), 875.

Six Barycenters in Search of a Conic

E3469 [1991, 955]. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Suppose P is a point in the interior of triangle $A B C$ and suppose $A P, B P, C P$ meet the lines $B C, C A, A B$ respectively at the points D, E, F. Prove that the centroids of the six triangles $P B D, P D C, P C E, P E A, P A F, P F B$ lie on a conic if and only if P lies on at least one of the three medians of the triangle.

Restatement of problem and fixing of notation. Applying the homothety with center P and ratio 3:2 we see that the centroids of triangles are on a conic if and only if the midpoints of $A F, F B, B D, D C, C E$ and $E A$ are on one conic. Let x, y, z, u, v, w denote half the lengths of $A F, F B, B D, D C, C E, E A$, respectively. Let the midpoints of $A F, F B, B D, D C, C E, E A$ be denoted by $1,2,4,5,6$ respectively.

Solution I by Victor Prasolov, Independent University of Moscow, Moscow, Russia.

By Carnot's Theorem (see Howard W. Eves, A survey of geometry (Revised Edition), Allyn and Bacon, 1972, pages 256 and 262) the six centroids lie on a conic if and only if

$$
\begin{equation*}
x(2 x+y) z(2 z+u) v(2 v+w)=w(2 w+v) u(2 u+z) y(2 y+x) \tag{1}
\end{equation*}
$$

By Ceva's Theorem, $x z v=w u y$, so (1) simplifies to $x z w+z v y+v x u-(w u x+$ $u y v+y w z)=0$, or $(x-y)(z-u)(w-v)=0$. This condition corresponds to P lying on a median.

Solution II by Albert Nijenhuis, Seattle, WA. By Pascal's Theorem, the points 1, $2,3,4,5$, and 6 lie on a conic if and only if the three points $Q=A B \cap 45$, $R=B C \cap 61$ and $S=C A \cap 23$ are collinear. (There is no real difficulty if any of these points are at infinity. The ratio $A Q / Q B$, for example, is replaced by -1 if $A B \| 45$.)

By Menelaus' Theorem, we have

$$
\begin{gathered}
\frac{A Q}{Q B} \cdot \frac{2 z+u}{u} \cdot \frac{v}{2 w+v}=-1, \quad \frac{B R}{R C} \cdot \frac{2 v+w}{w} \cdot \frac{x}{2 y+x}=-1, \\
\frac{C S}{S A} \cdot \frac{2 x+y}{y} \cdot \frac{z}{2 u+z}=-1
\end{gathered}
$$

Multiplying these together and using Ceva's theorem, as in Solution I, we see that $A Q / Q B \cdot B R / R C \cdot C S / S A=-1$ if and only if $(x-y)(z-u)(w-v)=0$. Thus Q, R, S are collinear and hence the points $1,2,3,4,5,6$ lie on a conic if and only if P is on a median.

Comments by Neela Lakshmanan, University of Scranton, Scranton, PA. The restriction that P is interior to the triangle may be relaxed: we need only that P does not lie on any side of the triangle.

We can prove that the result is true not only for the midpoints but also for the points that divide each of those six segments in a constant ratio: If $1,2,3,4,5,6$ are points on the sides of the triangle defined by $A 1: 1 F=F 2: 2 B=B 3: 3 D=$ $D 4: 4 C=C 5: 5 E=E 6: 6 A$, then the six points lie on a conic if and only if P is on a median. Also, if P is an interior point, the hexagon $1,2,3,4,5,6$ is convex and attains its maximum area when P is the centroid of $\triangle A B C$.

Editorial comment. Many of the solvers supplemented the use of Carnot's Theorem or Pascal's Theorem with homogeneous coordinates and analytic methods. Some others worked directly with conditions on the six coefficients of a general conic.

Solved also by F. Bellot and M. A. Lopéz (Spain), R. J. Chapman (U.K.), J. Fukuta (Japan), H. Kappus (Switzerland), O. P. Lossers (The Netherlands), I. A. Sakmar (Turkey), Anchorage Math Solutions Group, and the proposer. One incorrect solution was received.

5 Contributed Solutions to MONTHLY problems

List of solutions contributed by Hüseyin Demir to problems in American Mathematical Monthly:
[1] Advanced Problem 4057, American Mathematical Monthly, 51, (1944), 168.
[2] Elementary Problem 1107, American Mathematical Monthly, 61, (1954), 643.
[3] Elementary Problem 1142, American Mathematical Monthly, 62, (1955), 444.
[4] Elementary Problem 1148, American Mathematical Monthly, 62, (1955), 495.
[5] Elementary Problem 1166, American Mathematical Monthly, 63, (1956), 42.
[6] Elementary Problem 1687, American Mathematical Monthly, 72, (1965), 425.
[7] Elementary Problem 2122, American Mathematical Monthly, 76, (1969), 833.
[8] Elementary Problem 2398, American Mathematical Monthly, 81, (1974), 89.
Solution to Problem 4057:
American Mathematical Monthly, 51, (1944), 168.

Euler Line

4057 [1942, 616]. Proposed by J. R. Musselman, Western. Reserve University
Let B_{1}, B_{2}, B_{3} be the points symmetric to the vertices of triangle $A_{1} A_{2} A_{3}$ in its circumcenter O, and let C_{1}, C_{2}, C_{3} be the reflections of A_{i} in the perpendicular bisector of the sides of $A_{1} A_{2} A_{3}$. It is known that the circles $O B_{1} C_{1}, O B_{2} C_{2}$, $O B_{3} C_{3}$ meet at a point P. Show that P lies on the Euler line of $A_{1} A_{2} A_{3}$ and that O is the midpoint of $P D$, where D is the inverse in the circumcircle of the orthocenter H of $A_{1} A_{2} A_{3}$.

Solution by Hiiseyin Demir, Columbia University. Let $G_{1} G_{2} G_{3}$ be the triangle formed by the straight lines $A_{i} C_{i}$ so that $A_{1} A_{2} A_{3}$ is its medial triangle, the circumcircle (O) of the latter is its ninepoint circle, $G_{i} C_{i}$ are its altitudes, its orthocenter H^{\prime} is the symmetric of H with respect to O. and the straight lines $C_{i} B_{i}$ are concurrent in H^{\prime}. Let P be the point where the circle ($O B_{1} C_{1}$) cuts $O H^{\prime}$, i.e., $O H$. We have $H^{\prime} O \cdot H^{\prime} P=H^{\prime} C_{1} \cdot H^{\prime} B_{1}=H^{\prime} C_{1} \cdot H^{\prime} B_{i}$; hence the circles $\left(O B_{i} C_{i}\right)$ intersect again in P. The inverse of ($O B_{1} C_{1}$) with respect to (O) is $B_{1} C_{1}$, and hence $O H^{\prime} \cdot O P=\bar{O} \bar{C}_{1}{ }^{2}=R^{2}$. Since $O H \cdot O D=R^{2}$ and $O H=H^{\prime} O$, we must have $O D=P O$.

Solved also by H. Eves using inversion with respect to O and power $-R^{2}$ which gives a concise proof.

Solution to Problem 1107:
American Mathematical Monthly, 61, (1954), 643.
A Pencil of Planes Associated with a Tetrahedron
E 1107 [1954, 194]. Proposed by Victor Thébault, Tennie, Sarthe, France
On the edges $A B, A C, A D$ of a tetrahedron $A B C D$ are marked points M, N, P such that $A B=n A M, A C=(n+1) A N, A D=(n+2) A P$. Show that the plane $M N P$ contains a fixed line as n varies.
I. Solution by Hiuseyin Demir, Zonguldak, Turkey. From the relations it is evident that the ranges of points $[M]$ and $[P]$ are projective. But since A is a self-corresponding element, the projectivity is a perspectivity. Hence $M P$ is on a fixed point P^{\prime}. Similarly $M N$ is on a fixed point N^{\prime}. Hence the plane $M N P$ is on the fixed line $P^{\prime} N^{\prime}$.

Solution to Problem 1142:
American Mathematical Monthly, 62, (1955), 444.

Semi-vertical Angle of a Right Circular Cone

E 1142 [1954, 711]. Proposed by M. S. Klamkin, Polytechnic Institute of Brooklyn, N. Y.

Find the semi-vertical angle of a right circular cone if three generating lines make angles of $2 \alpha, 2 \beta, 2 \gamma$, with each other.

Demir gave the equivalent answer

$$
\sin ^{2} \phi=-\frac{16 \sin ^{2} \alpha \sin ^{2} \beta \sin ^{2} \gamma}{\left|\begin{array}{cccc}
0 & \sin \alpha & \sin \beta & \sin \gamma \\
\sin \alpha & 0 & \sin \gamma & \sin \beta \\
\sin \beta & \sin \gamma & 0 & \sin \alpha \\
\sin \gamma & \sin \beta & \sin \alpha & 0
\end{array}\right|} .
$$

Solution to Problem 1148:
American Mathematical Monthly, 62, (1955), 495.

Two Equiareal Triangles

E 1148 [1955, 40]. Proposed by Victor Thébault, Tennie, Sarthe, France
Let a, b, c be arbitrary points on the sides $B C, C A, A B$ of triangle $A B C$, and let $A^{\prime}, B^{\prime}, C^{\prime}$ be the reflections of A, B, C in the midpoints of the segments $b c, c a$, $a b$. Show that triangles $a b c$ and $A^{\prime} B^{\prime} C^{\prime}$ have equal areas.

Solution by Hiuseyin Demir, Zonguldak, Turkey. Let $a^{\prime}, b^{\prime}, c^{\prime}$ be the reflections of a, b, c in the midpoints of $B C, C A, A B$. Since, by a well known property, $a b c$ and $a^{\prime} b^{\prime} c^{\prime}$ have equal areas, we shall prove that $a^{\prime} b^{\prime} c^{\prime}$ and $A^{\prime} B^{\prime} C^{\prime}$ have equal areas. From $\overrightarrow{a B^{\prime}}=\overrightarrow{B c}=\overrightarrow{c^{\prime} A}, \overrightarrow{a C^{\prime}}=\overrightarrow{C b}=\overrightarrow{b^{\prime} A}$ we get $b^{\prime} c^{\prime}=B^{\prime} C^{\prime}$. Similarly $c^{\prime} a^{\prime}$ $=C^{\prime} A^{\prime}, a^{\prime} b^{\prime}=A^{\prime} B^{\prime}$, and triangles $a^{\prime} b^{\prime} c^{\prime}$ and $A^{\prime} B^{\prime} C^{\prime}$ are actually congruent.

Also solved by W. B. Carver, A. R. Hyde, M. S. Klamkin, D. C. B. Marsh, C. S. Ogilvy, C. F. Pinzka, Roscoe Woods, and the proposer.

Pinzka called attention to two similar results in R. A. Johnson, Modern Geometry (1929), p. 80. Carver, Hyde, Ogilvy, and Woods gave simple solutions using oblique coordinates.

Editorial Note. The above solution shows that triangles $a^{\prime} b^{\prime} c^{\prime}, A^{\prime} B^{\prime} C^{\prime}$ are not only congruent, but also homothetic. It follows that if a, b, c are collinear on a line L, then $A^{\prime}, B^{\prime}, C^{\prime}$ are also collinear on a line L^{\prime} parallel to the reciprocal transversal of L. Consequently, if L is a Simson line of triangle $A B C$, then L and L^{\prime} are perpendicular.

Solution to Problem 1166:
American Mathematical Monthly, 63, (1956), 42.

Chain of Circles in a Segment

E 1166 [1955, 364]. Proposed by Leon Bankoff, Los Angeles, Calif.
Let $D E$ be a variable chord perpendicular to diameter $A B$ of a given circle (O). The maximum circle (ω_{0}) inscribed in the smaller segment, $D E B$, touches chord $D E$ in C. The circle $\left(\omega_{1}\right)$ is tangent to $\left(\omega_{0}\right),(O)$, and $D C$ and another circle $\left(\omega_{2}\right)$ is tangent to $\left(\omega_{1}\right),(O)$, and $D C$. Find the ratio $B C / C A$ for which the radius of circle (ω_{2}) is a maximum.

Solution by Hiiseyin Demir, Zonguldak, Turkey. Denote the radii of (O) and $\left(\omega_{i}\right)$ by R and r_{i} respectively. Let $\left(\omega_{1}\right),\left(\omega_{2}\right)$ touch $C D$ in C_{1}, C_{2}. Then we easily get

$$
C C_{1}=2 \sqrt{r_{0} r_{1}}, \quad C_{1} C_{2}=2 \sqrt{r_{1} r_{2}} .
$$

From right triangles having hypotenuses $O \omega_{1}=R-r_{1}, O \omega_{2}=R-r_{2}$ we get

$$
\begin{gather*}
\left(R-2 r_{0}+r_{1}\right)^{2}+4 r_{0} r_{1}=\left(R-r_{1}\right)^{2} \tag{1}\\
\left(R-2 r_{0}+r_{2}\right)^{2}+4\left(\sqrt{r_{0} r_{1}}+\sqrt{r_{1} r_{2}}\right)^{2}=\left(R-r_{2}\right)^{2}
\end{gather*}
$$

The value

$$
r_{1}=r_{0}\left(R-r_{0}\right) / R
$$

obtained from (1), when substituted in (2) yields

$$
r_{2}=\left(R-r_{0}\right)^{2} r_{0} /\left(R+r_{0}\right)^{2} .
$$

Now, introducing $k=B C / C A=r_{0} /\left(R-r_{0}\right)$ and applying the derivative test for a maximum, we get

$$
k=(\sqrt{5}-1) / 4
$$

Also solved by G. B. Charlesworth, Walter Guber, A. R. Hyde, R. B. Plymale, and the Proposer. Some of these solutions were based upon a misinterpretation of the figure of the problem.

The Proposer remarked that the problem was suggested by an attempt to display circle $\left(\omega_{2}\right)$ to best advantage in a diagram. The following interesting allied facts were pointed out by the Proposer:

1. Circles $\left(\omega_{0}\right)$ and $\left(\omega_{1}\right)$ are maximum when C coincides with O, but $\left(\omega_{2}\right)$ is a maximum when $B C / C A=(\sqrt{5}-1) / 4$, with the unexpected consequence that $C B$ is the side of a regular decagon inscribed in the circle on $A C$ as diameter.
2. $r_{2(\max)}=r_{1} / 2$.
3. $r_{n}=2 A B \cos ^{2} u /\left[\tan ^{n}(u / 2)+\cot ^{n}(u / 2)\right]^{2}, u$ being the angle $A B D$, (communicated to the Proposer by Victor Thébault).
4. r_{n} is rational if $A C$ and $C B$ are rational.

Solution to Problem 1687:
American Mathematical Monthly, 72, (1965), 425.

An Application of Menelaus' Theorem

E 1687 [1964, 430]. Proposed by Daniel Pedoe, Purdue University

$U V W$ is an equilateral triangle; A, B, C are the respective midpoints of the sides $V W, W U, U V ; A^{\prime}$ is any point on line $V W, B^{\prime}$ any point on line $W U$, and C^{\prime} any point on line $U V$. If P is the intersection of $B C$ and $B^{\prime} C^{\prime}, Q$ of $C A$ and $C^{\prime} A^{\prime}, R$ of $A B$ and $A^{\prime} B^{\prime}$, prove that (1) the lines $A^{\prime} P, B^{\prime} Q, C^{\prime} R$ are concurrent, (2) the areal coordinates of the point of concurrency with respect to triangle $A B C$ are, with a suitable sign convention, $\left(A A^{\prime}\right)^{-1}:\left(B B^{\prime}\right)^{-1}:\left(C C^{\prime}\right)^{-1}$.

Generalize both (1) and (2) by means of an affine projection, and generalize (1) by a general projection.
I. Solution by Huseyin Demir, Middle East Technical University, Ankara, Turkey. (1) We first set $B C=C A=A B=1$ and consider $V W, W U, U V ; A A^{\prime}=a^{\prime}$, $B B^{\prime}=b^{\prime}, C C^{\prime}=c^{\prime}$ as directed segments. Let λ, μ, ν be the ratios in which P, Q, R divide the sides of $A^{\prime} B^{\prime} C^{\prime}$. Applying the Menelaus theorem to the pair $U C^{\prime} B^{\prime}$, $C B$ we get $\left(P B^{\prime} / P C^{\prime}\right) \cdot\left(C C^{\prime} / C U\right) \cdot\left(B U / B B^{\prime}\right)=1$ or $\lambda\left(-c^{\prime}\right)\left(1 / b^{\prime}\right)=1$; i.e., $\lambda=-b^{\prime} / c^{\prime}$. Considering also two other pairs we get $\mu=-c^{\prime} / a^{\prime}$ and $\nu=-a^{\prime} / b^{\prime}$ which give $\lambda \cdot \mu \cdot \nu=-1$ proving the concurrency at a point T.
(2) We denote the areal coordinates of T by the matrices $\left(l^{\prime} m^{\prime} n^{\prime}\right)$ and ($l m n$) in the triangles $A^{\prime} \dot{B}^{\prime} C^{\prime}$ and $A B C$ respectively, and from $l^{\prime}: n^{\prime}=-\mu, m^{\prime}: l^{\prime}=-\nu$ we obtain

$$
l^{\prime}: m^{\prime}: n^{\prime}=l^{\prime}: \frac{a^{\prime}}{b^{\prime}} l^{\prime}: \frac{a^{\prime}}{c^{\prime}} l^{\prime}=\frac{1}{a^{\prime}}: \frac{1}{b^{\prime}}: \frac{1}{c^{\prime}} .
$$

Now to find $l: m: n=(l m n)$, let us first introduce the following symbol

$$
L M N / X Y Z=\left[\begin{array}{lll}
l_{1} & l_{2} & l_{3} \\
m_{1} & m_{2} & m_{3} \\
n_{1} & n_{2} & n_{3}
\end{array}\right]
$$

where the columns are the areal coordinates of L, M, N in the triangle $X Y Z$. We have
(β) $\quad A^{\prime} B^{\prime} C^{\prime} / U V W=\left[\begin{array}{ccc}0 & 1-a^{\prime} & 1+a^{\prime} \\ 1+b^{\prime} & 0 & 1-b^{\prime} \\ 1-c^{\prime} & 1+c^{\prime} & 0\end{array}\right], \quad U V W / A B C=\left[\begin{array}{rrr}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$, and $T / A^{\prime} B^{\prime} C^{\prime}=\left(1 / a^{\prime} 1 / b^{\prime} 1 / c^{\prime}\right)$. It is not difficult to see the general identity

$$
T / A B C=\left(T / A^{\prime} B^{\prime} C^{\prime}\right) \cdot\left(A^{\prime} B^{\prime} C^{\prime} / U V W\right) \cdot(U V W / A B C) .
$$

Substituting (α) and (β) in (γ),

$$
(l m n)=\left(l^{\prime} m^{\prime} n^{\prime}\right) \cdot\left[\begin{array}{ccc}
0 & 1-a^{\prime} & 1-a^{\prime} \\
1-b^{\prime} & 0 & 1-b^{\prime} \\
1-c^{\prime} & 1-c^{\prime} & 0
\end{array}\right] \cdot\left[\begin{array}{rrr}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

$$
=\left(1 / a^{\prime} 1 / b^{\prime} 1 / c^{\prime}\right)\left[\begin{array}{ccc}
2 & 2 a^{\prime} & -2 a^{\prime} \\
-2 b^{\prime} & 2 & 2 b^{\prime} \\
2 c^{\prime} & -2 c^{\prime} & 2
\end{array}\right]=\left(2 / a^{\prime} 2 / b^{\prime} 2 / c^{\prime}\right)
$$

$$
T / A B C=l: m: n=1 / a^{\prime}: 1 / b^{\prime}: 1 / c^{\prime}=A A^{\prime-1}: B B^{\prime-1}: C C^{\prime-1} .
$$

(3) An affine projection transforms $U V W$ into an arbitrary triangle and $A B C$ into its medial triangle in which the concurrency holds.

In an affine transformation the ratio of segments and the ratio of areas being preserved, replacing $A A^{\prime} / 1, B B^{\prime} / 1, C C^{\prime} / 1$ by $A A^{\prime} / V W, B B^{\prime} / W U, C C^{\prime} / U V$, (δ) becomes

$$
T / A B C=\left(\frac{A A^{\prime}}{V W}\right)^{-1}:\left(\frac{B B^{\prime}}{W U}\right)^{-1}:\left(\frac{C C^{\prime}}{U V}\right)^{-1}
$$

By a general projection the perspective triangles $U V W$ and $A B C$ are transformed into such triangles. So the generalization is obtained for any $U V W$ and for any inscribable triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$, such that $A U, B V, C W$ are concurrent. Furthermore, the point P has the same areal coordinates in $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$.

Also solved by the proposer who points out that the generalization of (1) to general projections occurs as a problem in a 1909 Mathematical Tripos, Part I.

Solution to Problem 2122:
American Mathematical Monthly, 76, (1969), 833.

An Extension of Napoleon's Theorem

E 2122 [1968, 898]. Proposed by Stanley Rabinowitz, Far Rockaway, N. Y.
Let D, E and F be points in the plane of a nonequilateral triangle $A B C$ so that triangles $B D C, C E A$ and $A F B$ are directly similar. Prove that triangle $D E F$ is equilateral if and only if the three triangles are isosceles (with a side of triangle $A B C$ as base) with base angles 30°. (The "if" part, Napoleon's theorem, is known. See the Mathematics Magazine, 1966, p. 166.)

Solution by Huseyin Demir, Middle East Technical University, Ankara, Turkey. The following lemma is easily proved:

Lemma. A triangle in the complex plane with vertices a, b and c is equilateral if and only if $a^{2}+b^{2}+c^{2}-b c-c a-a b=0$.

Let $a, b, c ; d, e, f$ be the affixes of the vertices of the triangles $A B C, D E F$. Since the triangles $D B C, E C A, F A B$ are directly similar, then for some t

$$
d=b+(c-b) t, \quad e=c+(a-c) t, \quad f=a+(b-a) t .
$$

Forming the expression $U=d^{2}+e^{2}+f^{2}-e f-f d-d e$, we find

$$
U=\left(a^{2}+b^{2}+c^{2}-b c-c a-a b\right)\left(3 t^{2}-3 t+1\right)
$$

If $A B C$ is equilateral, then by the lemma, $U=0$, and again by lemma, $D E F$ is equilateral. Now suppose that $D E F$ is equilateral, that is $U=0$ by lemma. Since $A B C$ is supposed to be non-equilateral, we must have $3 t^{2}-3 t+1=0$. Solving for t, we find $t=\frac{1}{3} \sqrt{3}$ cis $(\pm \pi / 6)$ which proves the assertion.

Also solved by Walter Bluger, Slobodan Ćuk (Yugoslavia), M. G. Greening (Australia). L. Kuipers, C. F. Merrill, and the proposer. Jordi Dou (Spain) shows the uniqueness of the solution. A. W. Walker mentions a weaker result given in a paper by Wong, this Monthly, 48 (1941), p. 530.

Solution to Problem 2398:
American Mathematical Monthly, 81, (1974), 89.

A Result Known to Johnson

E 2398 [1973, 202]. Proposed by C. W. Dodge, University of Maine at Orono
Prove that the point of intersection of the diagonals of a parallelogram lies on the pedal circle for any vertex with respect to the triangle formed by the other three vertices.
I. Solution by Huseyin Demir, Middle East Technical University, Ankara, Turkey. Let $A B C D$ be a given parallelogram with I as center. Let the projections of D on sides $B C, C A, A B$ of triangle $A B C$ be $A^{\prime}, B^{\prime}, C^{\prime}$, respectively. If $\Varangle D=\pi / 2$, the pedal triangle degenerates into the Simson line $A C$ containing the point I.

We give the proof in the case where $\Varangle D>\pi / 2$ and A^{\prime} is on the segment $B C$ and C^{\prime} is on the segment $A B$. Similar proofs may be given in other cases. We need only show that $\Varangle C^{\prime} A^{\prime} I=\Varangle A B^{\prime} C^{\prime}$. In obtaining this equality we use the properties that $A C^{\prime} B^{\prime} D$ and $D C^{\prime} B A^{\prime}$ are cyclic and triangle $D I A^{\prime}$ is isosceles. We have

$$
\begin{aligned}
\Varangle C^{\prime} A^{\prime} I & =\Varangle C^{\prime} A^{\prime} D-\Varangle I A^{\prime} D=\Varangle C^{\prime} B D-\Varangle I D A^{\prime}=\Varangle A^{\prime} D C \\
& =\pi / 2-\Varangle C=\pi / 2-\Varangle A=\Varangle A D C^{\prime}=\Varangle A B^{\prime} C^{\prime} .
\end{aligned}
$$

II. Solution by A. W. Walker, Toronto, Canada. Let D be the reflection of the vertex A of triangle $A B C$ in the midpoint M of the side $B C$. If $B A C$ is a right triangle, the pedal "circle" of D for triangle $A B C$ is the line $B C$; if not, let E be the meet of the lines tangent to circle $A B C$ at B and C. Then $B D$ and $B E$ are isogonal conjugate lines in the angle $A B C$, and likewise for $C D$ and $C E$ in angle $B C A$, so D and E are isogonal conjugate points in triangle $A B C$ and therefore (R. A. Johnson, Modern Geometry, p. 155) have a common pedal circle passing through the projection M of E on $B C$.

Remark. E 2398 is a special case of the theorem: For a plane non-orthocentric quadrangle $A B C D$ there are four pedal circles (and four nine-point circles) passing through the center of the rectangular hyperbola ABCD (Johnson, p. 242).

Also solved by Günter Bach (Germany), Leon Bankoff, Howard Eves, Michael Goldberg, M. G. Greening (Australia), Lew Kowarski, L. Kuipers, and the proposer.

List of Proposals composed by Hüseyin Demir
[1] Proposal 208, Mathematics Magazine, 28, (1954-1955), 27.
[2] Proposal 217, Mathematics Magazine, 28, (1954-1955), 103.
[3] Proposal 227, Mathematics Magazine, 28, (1954-1955), 160.
[4] Proposal 234, Mathematics Magazine, 28, (1954-1955), 234.
[5] Proposal 242, Mathematics Magazine, 28, (1954-1955), 284.
[6] Proposal 248, Mathematics Magazine, 29, (1955-1956), 46.
[7] Proposal 258, Mathematics Magazine, 29, (1955-1956), 163.
[8] Proposal 266, Mathematics Magazine, 29, (1955-1956), 222.
[9] Proposal 298, Mathematics Magazine, 30, (1956-1957), 164.
[10] Proposal 304, Mathematics Magazine, 30, (1956-1957), 223.
[11] Proposal 334, Mathematics Magazine, 31, (1957-1958), 228.
[12] Proposal 349, Mathematics Magazine, 32, (1958-1959), 47.
[13] Proposal 372, Mathematics Magazine, 32, (1958-1959), 220.
[14] Proposal 380, Mathematics Magazine, 32, (1958-1959), 278.
[15] Proposal 384, Mathematics Magazine, 33, (1969-1960), 51.
[16] Proposal 398, Mathematics Magazine, 33, (1969-1960), 165.
[17] Proposal 407, Mathematics Magazine, 33, (1959-1960), 225.
[18] Proposal 415, Mathematics Magazine, 33, (1959-1960), 296.
[19] Proposal 419, Mathematics Magazine, 34, (1960-1961), 49.
[20] Proposal 425, Mathematics Magazine, 34, (1960-1961), 109.
[21] Proposal 437, Mathematics Magazine, 34, (1961), 174.
[22] Proposal 440, Mathematics Magazine, 34, (1961), 237.
[23] Proposal 458, Mathematics Magazine, 34, (1961), 364.
[24] Proposal 472, Mathematics Magazine, 35, (1962), 55.
[25] Proposal 487, Mathematics Magazine, 35, (1962), 186.
[26] Proposal 498, Mathematics Magazine, 35, (1962), 309.
[27] Proposal 509, Mathematics Magazine, 36, (1963), 133.
[28] Proposal 517, Mathematics Magazine, 36, (1963), 197.
[29] Proposal 529, Mathematics Magazine, 36, (1963), 264.
[30] Proposal 537, Mathematics Magazine, 37, (1964), 55.
[31] Proposal 544, Mathematics Magazine, 37, (1964), 119.
[32] Proposal 563, Mathematics Magazine, 37, (1964), 276.
[33] Proposal 572, Mathematics Magazine, 38, (1965), 52.
[34] Proposal 587, Mathematics Magazine, 38, (1965), 179.
[35] Proposal 599, Mathematics Magazine, 38, (1965), 241.
[36] Proposal 600, Mathematics Magazine, 38, (1965), 317.
[37] Proposal 609, Mathematics Magazine, 39, (1966), 69.
[38] Proposal 628, Mathematics Magazine, 39, (1966), 246.
[39] Proposal 639, Mathematics Magazine, 39, (1966), 306.
[40] Proposal 649, Mathematics Magazine, 40, (1967), 100.
[41] Proposal 680, Mathematics Magazine, 41, (1968), 42.
[42] Proposal 724, Mathematics Magazine, 42, (1969), 96.
[43] Proposal 738, Mathematics Magazine, 42, (1969), 214.
[44] Proposal 743, Mathematics Magazine, 42, (1969), 267.
[45] Proposal 756, Mathematics Magazine, 431, (1970), 103.
[46] Proposal 763, Mathematics Magazine, 43, (1970), 166.
[47] Proposal 775, Mathematics Magazine, 43, (1970), 278.
[48] Proposal 806, Mathematics Magazine, 44, (1971), 228.
[49] Proposal 839, Mathematics Magazine, 45, (1972), 228.
[50] Proposal 859, Mathematics Magazine, 46, (1973), 103.
[51] Proposal 916, Mathematics Magazine, 47, (1974), 286.
[52] Proposal 963, Mathematics Magazine, 49, (1976), 43.
[53] Proposal 998, Mathematics Magazine, 49, (1976), 252.
[54] Proposal 1197, Mathematics Magazine, 57, (1984), 238.
[55] Proposal 1206, Mathematics Magazine, 58, (1985), 46.
[56] Proposal 1211, Mathematics Magazine, 58, (1985), 111.
[57] Proposal 1298, Mathematics Magazine, 61, (1988), 195.
[58] Proposal 1305, Mathematics Magazine, 61, (1988), 261.
[59] Proposal 1327, Mathematics Magazine, 62, (1989), 274.
[60] Proposal 1356, Mathematics Magazine, 63, (1990), 274.
[61] Proposal 1371, Mathematics Magazine, 64, (1991), 132.
[62] Proposal 1377, Mathematics Magazine, 64, (1991), 197.
[63] Proposal 1405, Mathematics Magazine, 65, (1992), 265.

Proposal 208, Mathematics Magazine, 28, (1954-1955), 27.
208. Proposed by Huseyin Demir, Zonguldak, Turkey.

Evaluate the following trigonometric expressions without using numerical tables:

$$
\begin{aligned}
& A=\cos 5^{\circ} \cos 10^{\circ} \cos 15^{\circ} \cdots \cos 75^{\circ} \cos 80^{\circ} \cos 85^{\circ}, \\
& B=\cos 1^{\circ} \cos 3^{\circ} \cos 5^{\circ} \ldots \cos 85^{\circ} \cos 87^{\circ} \cos 89^{\circ}, \\
& C=\cos 4^{\circ} \cos 8^{\circ} \cos 12^{\circ} \cdots \cos 80^{\circ} \cos 84^{\circ} \cos 88^{\circ} .
\end{aligned}
$$

Proposal 217, Mathematics Magazine, 28, (1954-1955), 103.
217. Proposed by Huseyin Demir, Zonguldak, Turkey.

Prove that a necessary and sufficient condition for the convex polygon $A_{1} A_{2} A_{3} A_{4}$ to be inscriptable is that:
where $A_{i j}$ denotes the distance between the vertices A_{i} and A_{j} if $j>i$, and $A_{j} A_{i}^{j}=-A_{i} A_{j}$.

Proposal 227, Mathematics Magazine, 28, (1954-1955), 160.
227. Proposed by Huseyin Demir, Zonguldak, Turkey.

Let $A_{1} B_{1}, A_{2} B_{2}$ and $A_{3} B_{3}$ be three bars of lengths $1_{1}, 1_{2}$ and 1_{3} with weights W_{1}, W_{2} and W_{3} respectively. The ends B_{1}, B_{2} and B_{3} rest on a horizontal surface while the other ends A_{1}, A_{2} and A_{3} are supported by the bars $A_{3} B_{3}, A_{1} B_{1}$ and $A_{2} B_{2}$ respectively. Find the reactions R_{1}, R_{2} and R_{3} at B_{1}, B_{2} and B_{3}.

Proposal 234, Mathematics Magazine, 28, (1954-1955), 234.
23 4. Proposed by Huseyin Demir, Zonguldak, Turkey.
Given an m by n rectangular lattice containing $m n$ points, find the total number of (a) squares, (b) rectangles having vertices at the points of the lattice. Consider $m \geq n$.

Proposal 242, Mathematics Magazine, 28, (1954-1955), 284.
242. Proposed by Huseyin Demir, Zonguldak, Turkey.

Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points dividing the sides of triangle $A B C$ in the ratio k, and let $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ be the points dividing the sides of triangle $A^{\prime} B^{\prime} C^{\prime}$ in the ratio $1 / k$. Prove that the triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is homothetic with the original triangle $A B C$.

Proposal 248, Mathematics Magazine, 29, (1955-1956), 46.
248. Proposed by Huseyin Demir, Zonguldak, Turkey.

Let Γ_{1} and Γ_{2} be two plane curves. Let t be a variable line intersecting these curves at the points M_{1}, M_{2} where the tangents t_{1} and t_{2} to the curves are parallel to each other. Prove that the centers of curvature C_{1} and C_{2} of Γ_{1} and Γ_{2} at M_{1} and M_{2} are collinear with the characteristic point C of the straight line t.

Proposal 258, Mathematics Magazine, 29, (1955-1956), 163.
258. Proposed by Huseyin Demir, Zonguldak, Turkey.

A triangle $A B C$ inscribed in a circle varies such that $A B$ and $A C$ keep fixed directions. Find the locus of the orthocenter H.

Proposal 266, Mathematics Magazine, 29, (1955-1956), 222.
266. Proposed by Huseyin Demir, Zonguldak, Turkey.

If M and M^{\prime} are points inverse to each other with respect to the circumcircle of a triangle $A B C$, then prove that:

$$
\begin{aligned}
& \angle B M C+\angle B M^{\prime} C=2 \angle A \\
& \angle C H A+\angle C M^{\prime} A=2 \angle B \\
& \angle A^{l} H E+\angle A M^{\prime} B=2 \angle C
\end{aligned}
$$

Proposal 298, Mathematics Magazine, 30, (1956-1957), 164.
298. Proposed by Huseyin Demir, Kandilli, Bolgesi, Turkey.

Let $y=f(x)$ be a curve with the following properties
a) $f(x)=f(-x)$
b) $f^{\prime}(x)>0$ for $x>0$
c) $f^{\prime \prime}(x)>0$

Determine the weight per unit length $w(x)$ at the point (x, y) such that when the curve is suspended under gravity by any two points on it, the curve will keep its original shape.

Proposal 304, Mathematics Magazine, 30, (1956-1957), 223.
304. Proposed by Huseyin Demir, Kandilli Bolgesi, Turkey.

Let $A B C$ be a triangle, $A B \neq A C$, inscribed in a circle O, and let K be the point where the exterior angle bisector of A meets O. A variable circle with center at K meets $A B, A C$ at E and F respectively, such that A is not an interior point of $K E F$. Find the limiting position m of the common point M of $E F, B C$ as $E F$ approaches $B C$.

Proposal 334, Mathematics Magazine, 31, (1957-1958), 228.
334. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

Find the simplest expression for the area S enclosed by the arc $A M$ of a cycloid, the arc $T M$ of the rolling circle $\Omega(a)$ and the base line segment $A T$.

Proposal 349, Mathematics Magazine, 32, (1958-1959), 47.
349. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

If $A B C D, A E B K$ and $C E F G$ are squares of the same orientations, prove that B bisects $D F$.

Proposal 372, Mathematics Magazine, 32, (1958-1959), 220.
372. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

Prove the identity

$$
\begin{aligned}
\sin ^{2}\left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)= & \sin ^{2} \theta_{1}+\cdots+\sin ^{2} \theta_{n}+2 \sum_{1 \leqq i<j \leqq n}^{n} \\
& \sin \theta_{i} \sin \theta_{j} \cos \left(\theta_{1}+2 \theta_{i+1}+\cdots+2 \theta_{j-1}+\theta_{j}\right)
\end{aligned}
$$

Proposal 380, Mathematics Magazine, 32, (1958-1959), 278.
380. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. Solve the system of equations

$$
\begin{aligned}
& x(z-a)+u(x+u)=0 \\
& y(x-b)+u(y+u)=0 \\
& z(y-c)+u(z+u)=0
\end{aligned}
$$

where $a b c \neq 0$ and $a^{-1}+b^{-1}+c^{-1}=u^{-1}$.

Proposal 384, Mathematics Magazine, 33, (1969-1960), 51.
384. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

Let $\left(a_{i j}\right)$ be a matrix of nth order the sum of the elements of whose rows equals 1 . Prove that the totality $\left[\left(a_{i j}\right)\right]$ form a group of infinite order.

Proposal 398, Mathematics Magazine, 33, (1969-1960), 165.
398. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

Determine the roots of the equations $x^{2}+y_{1} x+y_{2}=0, y^{2}+x_{1} y+x_{2}=0$ where the coefficients (real numbers) in one equation are the roots of the other.

Proposal 407, Mathematics Magazine, 33, (1959-1960), 225.
407. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

The twelve edges of a cube are made of wires of one ohm resistance each. The cube is inserted into an electrical circuit by:
a) two adjacent vertices,
b) two opposite vertices of a face,
c) two opposite vertices of the cube.

Which offers the least resistance?

Proposal 415, Mathematics Magazine, 33, (1959-1960), 296.
415. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. Prove

$$
\sum_{p=0}^{n}\binom{n}{p} \cos (p) x \sin (n-p) x=2^{n-1} \sin n x
$$

Proposal 419, Mathematics Magazine, 34, (1960-1961), 49.
419. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. Determine the path in a vertical plane such that when a particle moved, under gravity, with an initial velocity v_{0} from a point of the path, the particle maintained a constant speed along the path. Assume no friction.

Proposal 425, Mathematics Magazine, 34, (1960-1961), 109.
425. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. If $n-1$ and $n+1$ are twin prime numbers, prove that $3 \phi(n) \leqq n$ where ϕ denotes Euler's ϕ-function.

Proposal 437, Mathematics Magazine, 34, (1961), 174.
437. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Prove or disprove the statement: The number of odd coefficients in the binomial expansion of $(a+b)^{[n]}$ is a power of 2 , the exponent $[n]$ being the number of l's appearing in the expression of n in the binary number system.

Proposal 440, Mathematics Magazine, 34, (1961), 237.
440. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Consider a packing of circles of radius r such that each is tangent to its six surrounding circles. Let a larger circle of radius R be drawn concentric with one of the small circles. If N is the number of small circles contained in the larger circle, prove that

$$
N=1+6 n+6 \sum_{p=1}^{n}\left[1 / 2\left(\sqrt{4 n^{2}-3 p^{2}}-p\right)\right]
$$

where $n=\left[1 ⁄ 2\left(\frac{R}{r}-1\right)\right]$, the square brackets designating the greatest integer function.

Proposal 458, Mathematics Magazine, 34, (1961), 364.
458. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

A student used DeMoivre's theorem incorrectly as

$$
(\sin \alpha+i \cos \alpha)^{n}=\sin n \alpha+i \cos n \alpha .
$$

For what values of α does the equation hold for every integer n ?

Proposal 472, Mathematics Magazine, 35, (1962), 55.
472. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Let (C) be a conic and M be a variable point on it. Let T be the point symmetric to M with respect to the main axis, and t the tangent line at T. Denote the intersection of the perpendicular from M to t with the line joining T to the center of the conic by I. If M^{\prime} is symmetric to M with respect to I, prove that

1. The locus of M^{\prime} is another conic (C^{\prime}) of the same kind as (C).
2. The conics (C) and $\left(C^{\circ}\right)$ are confocal.

Proposal 487, Mathematics Magazine, 35, (1962), 186.
487. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Find the square root of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Proposal 498, Mathematics Magazine, 35, (1962), 309.
498. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

If m and n are integers and δ, D are their g.c.d. and l.c.m. respectively, and $d(n)$ denotes the number of divisors of $n, \phi(n)$ being the Euler function, prove that:

$$
\begin{align*}
& d(m) d(n)=d(\delta) d(D) \tag{1}\\
& \phi(m) \phi(n)=\phi(\delta) \phi(D)
\end{align*}
$$

Proposal 509, Mathematics Magazine, 36, (1963), 133.
509. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Solve the cryptarithm

$$
\begin{array}{rrrrrrr}
& U & N & I & T & E & D \\
& S & T & A & T & E & S \\
\hline A & M & E & R & I & C & A
\end{array}
$$

in the base 11, introducing the digit α.

Proposal 517, Mathematics Magazine, 36, (1963), 197.
517. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let F and d be the focus and directrix of a parabola. If M and N are any two points on the parabola and M^{\prime}, N^{\prime} are their respective projections on d, show that

$$
\frac{\text { Area } F M N}{\text { Area } N^{\prime} M^{\prime} \mathrm{MN}}=\text { Constant. }
$$

Proposal 529, Mathematics Magazine, 36, (1963), 264.
529. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

A cycloid (cardioid) rolls on a straight line without sliding. Prove that the locus of the center of curvature of the curve at the point of tangency is a circle (ellipse).

Proposal 537, Mathematics Magazine, 37, (1964), 55.
537. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Determine the relative positions of an equilateral triangle and a square inscribed in the same circle so that their common area shall be an extremum.

Proposal 544, Mathematics Magazine, 37, (1964), 119.
544. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Solve the cryptarithm (alphametic)

$$
O N E+T W O+S I X=N I N E
$$

in the base 10 , with the following conditions:
a) $O N E<T W O<S I X$
b) $2|T W O, 6| S I X, 9 \mid N I N E$ where $a \mid b$ means " a divides b."

Proposal 563, Mathematics Magazine, 37, (1964), 276.
563. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let $A, B^{\prime}, A^{\prime}, B$ be four consecutive vertices of a regular hexagon. If M is an arbitrary point of the circumcircle (in particular on $\operatorname{arc} A^{\prime} B^{\prime}$) and $M A, M B$ intersect $B B^{\prime}$ and $A A^{\prime}$ in the points E and F respectively, then prove that:
(a) $\Varangle M E F=3 \Varangle M A F$
(b) $\Varangle M F E=3 \Varangle M B E$.

Proposal 572, Mathematics Magazine, 38, (1965), 52.
572. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

To the memory of President Kennedy. Mr. J. F. Kennedy was killed on November 22, 1963. That is, on the day 11-22-1963. Solve the cryptarithm

$$
J F \cdot(K E N+N E D Y)=(11+22) \cdot 1963
$$

in the decimal system.

Proposal 587, Mathematics Magazine, 38, (1965), 179.
587. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Prove the following inequality

$$
\left(\frac{\theta+\sin \theta}{\pi}\right)^{2}+\cos ^{4} \frac{1}{2} \theta<1, \quad(-\pi<\theta<+\pi)
$$

Proposal 599, Mathematics Magazine, 38, (1965), 241.
599. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

If a, b, and c are any three vectors in 3 -space, then show that the vectors

$$
a x(b x c), b x(c x a), c x(a x b)
$$

are linearly dependent.

Proposal 600, Mathematics Magazine, 38, (1965), 317.
600. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

If the area of a triangle $A B C$ is S and the areas of the in- and ex-contact triangles are T, T_{a}, T_{b}, T_{c}, then show that

$$
\begin{align*}
& T_{a}+T_{b}+T_{c}-T=2 S \tag{1}\\
& T_{a}^{-1}+T_{b}^{-1}+T_{c}^{-1}-T^{-1}=0
\end{align*}
$$

(2)

Proposal 609, Mathematics Magazine, 39, (1966), 69.
609. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Solve the following cryptarithm in the decimal system:

$$
4 \cdot N I N E=9 \cdot F O U R
$$

Proposal 628, Mathematics Magazine, 39, (1966), 246.
628. Proposed by B. Suer and Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Solve the alphametic,

$$
\mathrm{COS}^{2}+\mathrm{SIN}^{2}=\mathrm{UNO}^{2}
$$

in the decimal system.

Proposal 639, Mathematics Magazine, 39, (1966), 306.
639. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let $A B C D$ be a convex quadrangle and P be the intersection of diagonals $A C$ and $B D$. Let the distance of P from the sides $A B=a, B C=b, C D=c, D A$ $=d$ be x, y, z, and t respectively. Prove that

$$
x+y+z+t<\frac{3}{4}(a+b+c+d) .
$$

Proposal 649, Mathematics Magazine, 40, (1967), 100.

PROBLEMS

649. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Solve the cryptarithm

$T H R E E$
$+\quad F O U R$
$S E V E N$

in the decimal system such that:

3 does not divide $T H R E E$ in which the digit 3 is missing;
4 does not divide $F O U R$ in which the digit 4 is missing;
7 does not divide $S E V E N$ in which the digit 7 is missing.

Proposal 680, Mathematics Magazine, 41, (1968), 42.
680. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let E be an ellipse and $t^{\prime}, t^{\prime \prime}$ be two variable parallel tangents to it. Consider a circle C, tangent to $t^{\prime}, t^{\prime \prime}$ and to E externally. Show that the locus of the center of C is a circle.

Proposal 724, Mathematics Magazine, 42, (1969), 96.
724. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Find the probability that for a point P taken at random in the interior of a triangle $A B C(a \geqq b \geqq c)$, the distances of P from the sides of $A B C$ form the lengths of sides of a triangle.

Proposal 738, Mathematics Magazine, 42, (1969), 214.
738. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

There is a river with parallel and straight shores. A is located on one shore and B on the other, with $A B=72$ miles. A ferry boat travels the straight path $A B$ from A to B in four hours and from B to A in nine hours. If the boat's speed on still water is $v=13 \mathrm{mph}$, what is the velocity of the flow?

Proposal 743, Mathematics Magazine, 42, (1969), 267.
743. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let P be an interior point of a regular tetrahedron, $T \equiv A_{1} A_{2} A_{3} A_{4}$, with $p_{i}=P A_{i}$, and let $x_{i j}$ denote the distance of P from the edge $A_{i} A_{j}$. Then prove

$$
\sum_{i=1}^{4} p_{i} \geqq 2 \sqrt{3} / 3 \sum_{i<j} x_{i j},
$$

equality holding if and only if P is at the center O of T.

Proposal 756, Mathematics Magazine, 43, (1970), 103. 756. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Determine closed and centrally symmetric curves C, other than circles, such that the product of two perpendicular radius vectors (issued from the center) be a constant.

Proposal 763, Mathematics Magazine, 43, (1970), 166.
763. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Prove:

$$
\left(1+\frac{1}{3^{10}}+\frac{1}{5^{10}}+\cdots\right)=\left(1+\frac{1}{3^{4}}+\frac{1}{5^{4}} \cdots\right)\left(1-\frac{1}{2^{6}}+\frac{1}{3^{6}}-\frac{1}{4^{6}}+\cdots\right) .
$$

Proposal 775, Mathematics Magazine, 43, (1970), 278.
775. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

$$
\text { Prove } \int_{0}^{1} \sqrt[q]{1-x^{p}} d x=\int_{0}^{1} \sqrt[p]{1-x^{q}} d x, \text { where } p, q>0
$$

Proposal 806, Mathematics Magazine, 44, (1971), 228.
806. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let H be the orthocenter of an isosceles triangle $A B C$, and let $A H, B H$, and $C H$ intersect the opposite sides in D, E, and F, respectively. Prove that the incenters of the right triangles $H B D, H D C, H C E, H E A, H A F$, and $H F B$ lie on a conic.

Proposal 839, Mathematics Magazine, 45, (1972), 228.
839. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Given three boxes each containing w white balls and r red balls identical in shape. Take a ball from the first box and put it in the second box, then take a ball from the second box and put it in the third, and finally take a ball from the third box and put it in the first. Find the probability that the boxes have their original contents as to color.

Proposal 859, Mathematics Magazine, 46, (1973), 103.
859. Proposed by B. Suer and H. Demir, Middle East Technical University, Ankara, Turkey.

Solve the cryptarithm

$$
T H R E E+N I N E=E I G H T+F O U R .
$$

Proposal 916, Mathematics Magazine, 47, (1974), 286.
916. Proposed by H. Demir, M.E.T.U., Ankara, Turkey.

Let $X Y Z$ be the pedal triangle of a point P with regard to the triangle $A B C$. Then find the trilinear coordinates x, y, z of P such that

$$
Y A+A Z=Z B+B X=X C+C Y .
$$

Proposal 963, Mathematics Magazine, 49, (1976), 43.
963. Characterize convex quadrilaterals with sides a, b, c, and d such that

$$
\left|\begin{array}{llll}
a & b & c & d \\
d & a & b & c \\
c & d & a & b \\
b & c & d & a
\end{array}\right|=0
$$

[Hüseyin Demir, Ankara, Turkey.]

Proposal 998, Mathematics Magazine, 49, (1976), 252.
998. Characterize all triangles in which the triangle whose vertices are the feet of the internal angle bisectors is a right triangle. [Hüseyin Demir, Middle East Technical University, Ankara, Turkey.]

Proposal 1197, Mathematics Magazine, 57, (1984), 238.
1197. Characterize the triangles of which the midpoints of the altitudes are collinear. [Hüseyin Demir, Middle East Technical University, Ankara, Turkey.]

Proposal 1206, Mathematics Magazine, 58, (1985), 46.
1206. Let $A B C$ be a triangle with sides a, b, and c and semiperimeter s. Let the side $B C$ be subdivided using the points $B=P_{0}, P_{1}, \ldots, P_{n-1}, P_{n}=C$ in order. If r_{i} is the inradius of triangle $A P_{i-1} P_{i}$ for $i=1, \ldots, n$, prove that

$$
r_{1}+\cdots+r_{n}<\frac{1}{2} h_{a} \ln \frac{s}{s-a},
$$

where h_{a} is the length of the altitude from vertex A. [Hüseyin Demir, Middle East Technical University, Ankara, Turkey.]

Proposal 1211, Mathematics Magazine, 58, (1985), 111.
1211. Find the locus of points under which an ellipse is seen under a constant angle. [Hüseyin Demir, Middle East Technical University, Ankara, Turkey.]

Proposal 1298, Mathematics Magazine, 61, (1988), 195.
1298. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

A quadrilateral $A B C D$ is circumscribed about a circle, and P, Q, R, S are the points of tangency of sides $A B, B C, C D, D A$ respectively. Let $a=|A B|, b=|B C|, c=|C D|$, $d=|D A|$, and $p=|Q S|, q=|P R|$. Show that

$$
\frac{a c}{p^{2}}=\frac{b d}{q^{2}}
$$

Proposal 1305, Mathematics Magazine, 61, (1988), 261.
1305. Proposed by H. Demir and C. Tezer, Middle East Technical University, Ankara, Turkey.

Let $P_{0}=B, P_{1}, P_{2}, \ldots, P_{n}=C$ be points, taken in that order, on the side $B C$ of the triangle $A B C$. If r, r_{i} and h denote respectively the inradii of the triangles $A B C$, $A P_{i-1} P_{i}$ and the common altitude, prove that

$$
\prod_{i=1}^{n}\left(1-\frac{2 r_{i}}{h}\right)=1-\frac{2 r}{h}
$$

Proposal 1327, Mathematics Magazine, 62, (1989), 274.
1327. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Let the sides $P Q, Q R, R S, S P$ of a convex quadrangle $P Q R S$ touch an inscribed circle at A, B, C, D and let the midpoints of the sides $A B, B C, C D, D A$ be E, F, G, H. Show that the angle between the diagonals $P R, Q S$ is equal to the angle between the bimedians $E G, F H$.

Proposal 1356, Mathematics Magazine, 63, (1990), 274.
1356. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Let P, Q be points taken on the side $B C$ of a triangle $A B C$, in the order B, P, Q, C. Let the circumcircles of $P A B, Q A C$ intersect at $M(\neq A)$ and those of $P A C, Q A B$ at N. Show that A, M, N are collinear if and only if P and Q are symmetric in the midpoint A^{\prime} of $B C$.

Proposal 1371, Mathematics Magazine, 64, (1991), 132.
1371. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Let A, B, and C be vertices of a triangle and let D, E, and F be points on the sides $B C, A C$, and $A B$, respectively. Let U, X, V, Y, W, Z be the midpoints of, respectively, $B D, D C, C E, E A, A F, F B$. Prove that

$$
\operatorname{Area}(\triangle U V W)+\operatorname{Area}(\triangle X Y Z)-\frac{1}{2} \operatorname{Area}(\triangle D E F)
$$

is a constant independent of D, E, and F.

Proposal 1377, Mathematics Magazine, 64, (1991), 197.
1377. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Let $D E F$ be a variable triangle inscribed in triangle $A B C$, and let U, X, V, Y, W, Z be the midpoints of the line segments $B D, D C, C E, E A, A F$, and $F B$, respectively.

Show that the expression

$$
|U V W|+|X Y Z|-\frac{1}{2}|D E F|
$$

for areas is constant.

Proposal 1405, Mathematics Magazine, 65, (1992), 265.
1405. Proposed by Hüseyin Demin, Middle East Technical University, Ankara, Turkey.

Two circles inscribed in distinct angles of a triangle are isogonally related if the tangents from the third vertex not coinciding with the sides are symmetric with respect to the bisector of the third angle. Given three circles inscribed in distinct angles of a triangle, prove that if any two of the three pairs of circles are isogonally related then so is the third pair.

7 Solutions of Proposals

Solution to Proposal 208:
Mathematics Magazine, 28, (1954-1955), 27.

1. Solution by E. P. Starke, Rutgers University.

$$
\begin{aligned}
\sqrt{2} A & =\cos 5^{\circ} \cos 10^{\circ} \cdots \cos 40^{\circ} \sin 40^{\circ} \cdots \sin 10^{\circ} \sin 5^{\circ} \\
& =\sin 10^{\circ} \sin 20^{\circ} \cdots \sin 80^{\circ} / 2^{\circ},
\end{aligned}
$$

by use of the double-angle formula. A repetition of the same device gives: $2^{12} \sqrt{2} A=\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\sqrt{3} k / 2$, say, where $k=\sin 20^{\circ}\left(\sin 40^{\circ} \sin 80^{\circ}\right)=\sin 20^{\circ}\left(\sin ^{2} 60^{\circ}-\sin ^{2} 20^{\circ}\right)$ $=1 / 4\left(3 \sin 20^{\circ}-4 \sin ^{3} 20^{\circ}\right)=1 / 4 \sin 60^{\circ}=\sqrt{3} / 8$. So $A=3 \cdot 2^{-33 / 2}$. Similarly $\quad B=\cos 1^{\circ} \sin 1^{\circ} \cos 3^{\circ} \sin 3^{\circ} \ldots$ $\cos 43^{\circ} \sin 43^{\circ} \cos 45^{\circ} .2^{22} \sqrt{2} B=\sin 2^{\circ} \sin 6^{\circ} \sin 10^{\circ} \ldots \sin 86^{\circ}=C$. Let $x=\left.\cos 2\right|^{\circ} \cos 6^{\circ} \cos 10^{\circ} \ldots \cos 86^{\circ}$.
Then

$$
2^{22} \cdot 2^{22} \sqrt{2} B \cdot x=\sin 4^{\circ} \sin 12^{\circ} \sin 20^{\circ} \cdots \sin 172^{\circ}
$$

$$
=\sin 4^{\circ} \sin 8^{\circ} \sin 12^{\circ} \sin 16^{\circ} \cdots \sin 88^{\circ}=x
$$

whence

$$
B=2^{-89 / 2} \text { and } C=2^{-22} .
$$

II. Solution by H. M. Feldman, Washington University, St. Louis Missouri.
From the identities
$x^{2 n}-1=\left(x^{2}-1\right)\left(x^{2 n}+x^{2 n-1}+\cdots+1\right)=\left(x^{2}-1\right) \prod_{k=1}^{n-1}\left(x^{2}-2 x \cos \frac{k \pi}{n}+1\right) \quad$ and
$x^{2 n+1}=(x+1)\left(x^{2 n}-x^{2 n-1}+\cdots+1\right)=(x+1) \prod_{k=1}^{n}\left(x^{2}-2 x \cos \frac{2 k-1}{2 n+1}+1\right)$
we get, by letting $x= \pm 1$, the following relations:

$$
\begin{aligned}
& \prod_{1}^{n-1} \sin \frac{k \pi}{2 n}=\prod_{1}^{n-1} \cos \frac{k \pi}{n}=2^{-n+1} \sqrt{n} ; \\
& \prod_{1}^{n-1} \sin \frac{k \pi}{n} 2^{-n+1} n ; \prod_{1}^{n} \sin \frac{2 k-1}{2(2 n+1)} \pi=2^{-n} \\
& \text { and } \prod_{1}^{n} \cos \frac{2 k-1}{2(2 n+1)}=\prod_{1}^{n} \sin \frac{2 k-1}{2 n+1} \pi=2^{-n} \sqrt{2 n+1} .
\end{aligned}
$$

By means of these relations, we find:

$$
\begin{aligned}
& A=2^{-17}(3 \sqrt{2}) \\
& B=2^{-45} \sqrt{2} \\
& C=2^{-22}
\end{aligned}
$$

Also solved by Leon Bankoff, Los Angeles, California; Kwan Moon (partially), Mississippi State College; George Mott, Republic Aviation Corp., New York; T. F. Mulcrone, St. Charles College, Louisiana; L. A. Ringenberg, Eastern Mllinois State College; Chih-yi Wang, University of Minnesota; Hazel S. Wilson, Jacksonville State College, Alabama and the proposer.

Solution to Proposal 217:
Mathematics Magazine, 28, (1954-1955), 103.
Solution by H. M. Feldman, St. Louis, Missouri
Since $A_{i} A_{i}$ must clearly be zero, the determinant is skew-symmetric and its value is

$$
\left[\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)+\left(A_{1} A_{4}\right)\left(A_{2} A_{3}\right)+\left(A_{1} A_{3}\right)\left(A_{2} A_{4}\right)\right]^{2}
$$

The vanishing of the expression within the brackets is a necessary and sufficient condition for the quadrilateral to be inscriptable in a circle (Ptolemy's Theorem).

Also solved by Ben K. Gold, Los Angeles City College; M. S. Klamklin, Polytechnic Institute of Brooklyn; E. P. Starke; Rutgers University; Chih-yi Wang, University of Minnesota and the proposer.

Solution to Proposal 227:
Mathematics Magazine, 28, (1954-1955), 160.

Forces In Equilibrium

227. [January 1955] Proposed by Huseyin Demir, Zonguldak, Turkey.

Let $A_{1} B_{1}, A_{2} B_{2}$ and $A_{3} B_{3}$ be three bars of lengths $1_{1}, 1_{2}$ and 1_{3} with weights W_{1}, W_{2} and W_{3} respectively. The ends B_{1}, B_{2} and B_{3} rest on a horizontal surface while the other ends A_{1}, A_{2} and A_{3} are supported by the bars $A_{3} B_{3}, A_{1} B_{1}$ and $A_{2} B_{2}$ respectively. Find the reactions R_{1}, R_{2} and R_{3} at B_{1}, B_{2} and B_{3}.

Solution by the proposer. Let the reactions of the bars at the ends A_{1}, A_{2}, A_{3} be denoted by r_{1}, r_{2}, r_{3} and the lengths $A_{1} A_{2}, A_{2} B_{1}: A_{2} A_{3}$, $A_{3} B_{2} ; A_{3} A_{1}, A_{1} B_{3}$ by $a_{1}, b_{1} ; a_{2}, b_{2} ; a_{3}, b_{3}$ respectively.

Then considering the equilibrium of one of the bars, say $A_{1} B_{1}$, we have by taking moments of the forces $r_{1}, r_{2}, W_{1}, R_{1}$ at the point B_{i} :

$$
1 / 2 l_{1} W_{1}-1_{1} r_{1}+b_{1} r_{2}=0
$$

Setting $b_{i}=k_{i} 1_{i}(i=1,2,3)$ and considering the other equations corresponding to the two other bars, we get the system of equations with unknowns r_{1}, r_{2}, r_{3} :

$$
\begin{aligned}
& r_{1}-k_{1} r_{2}=1 / 2 W_{1} \\
& r_{2}-k_{2} r_{3}=1 / 2 W_{2} \\
& r_{3}-k_{3} r_{1}=1 / 2 W_{3}
\end{aligned}
$$

The determinant of this system being

$$
D=\left|\begin{array}{ccc}
1 & -k_{1} & 0 \\
0 & 1 & -k_{2} \\
-k_{3} & 0 & 1
\end{array}\right|=1-k_{1} k_{2} k_{3}
$$

we have

$$
\begin{aligned}
& r_{1}=\left(W_{1}+k_{1} W_{2}+k_{1} k_{2} W_{3}\right) / 2 D \\
& r_{2}=\left(W_{2}+k_{2} W_{3}+k_{2} k_{3} W_{1}\right) / 2 D \\
& r_{3}=\left(W_{3}++k_{3} W_{1}+k_{3} k_{1} W_{2}\right) / 2 D
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.R_{1}=W_{1}-r_{1}+r_{2}=W_{1}-\left(W_{1}+k_{1} W_{2}+k_{1} k_{2} W_{3}\right) / 2 D+W_{2}+k_{2} W_{3}+k_{2} k_{3} W_{1}\right) / 2 D \\
& \left.R_{1}=\left[\left(1+k_{2} k_{3}-2 k_{1} k_{2} k_{3}\right) W_{1}+\left(k_{1}-1\right) W_{2}+k_{2} k_{1}-1\right) W_{3}\right] / 2\left(1-k_{1} k_{2} k_{3}\right) \\
& R_{2}=\left[k_{3}\left(k_{2}-1\right) W_{1}+\left(1+k_{3} k_{1}-2 k_{1} k_{2} k_{3}\right) W_{2}+\left(k_{2}-1\right) W_{3}\right] / 2\left(1-k_{1} k_{2} k_{3}\right) \\
& R_{3}=\left[\left(k_{3}-1\right) W_{1}+k_{1}\left(k_{3}-1\right) W_{2}+\left(1+k_{1} k_{2}-2 k_{1} k_{2} k_{3}\right) W_{3}\right] / 2\left(1-k_{1} k_{2} k_{3}\right) \\
& \text { Also solved by George R. Mott, Republic Aviation Company. }
\end{aligned}
$$

Solution to Proposal 234:
Mathematics Magazine, 28, (1954-1955), 234.
Solution by the proposer. We distinguish two kinds of squares. A square is an N - or L-square according as their sides are or are not parallel to the sides of the lattice.

Every L-square is inscribed in a unique N-square. By a $p X_{p} N-$ square we mean one having p points on each of its sides. In such a square are inscribed evidently $p-2 \quad L$-squares. Including the N-square itself the number is $p-1$.

The number of $p X p N$-squares is easily seen to be ($m-p+1$) ($n-p+1$). Hence the number of $p X p N$-squares together with L squares inscribed in them is $(p-1)(m-p+1)(n-p+1)$. Hence the required total number of sc es is given by

$$
\begin{aligned}
N & =\sum_{p=2}^{m}(p-1)(m-p+1)(n-p+1) \\
& =m n \sum(p-1)-(m+n) \sum(p-1)^{2}+\sum(p-1)^{3} \\
& =m n \frac{n(n-1)}{2}-(m+n) \frac{n(n-1)(2 n-1)}{6}+\frac{n^{2}(n-1)^{2}}{4} \\
& =\frac{n(n-1)}{12}[6 m n-2(m+n)(2 n-1)+3 n(n-1)] \\
& =n\left(n^{2}-1\right)(2 m-n) / 12 .
\end{aligned}
$$

No solution of the rectangular case has been received. Solutions restricting the squares and rectangles to those with sides parallel to the lines of lattice points were received from Julian H. Braun, White Sands Proving Ground and E.. P.. Starke, Rutgers University. Braun noted that the restricted case was a variation of Problem E 1127 of the American Mathematical Monthly.

Solution to Proposal 242:

Mathematics Magazine, 28, (1954-1955), 284.
Solution by P. W. Allen Raine, Newport News High School,Newport News, Virginia. Let $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}, A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ represent the vector coordinates of the respective points and k, a scalar quantity. Thus

$$
A^{\prime}=\frac{k B+C}{k+1}, \quad B^{\prime}=\frac{k C+A}{k+1}, \quad C^{\prime}=\frac{k A+B}{k+1}
$$

and

$$
\begin{aligned}
& A^{\prime \prime}=\frac{B^{\prime}+k C^{\prime}}{1+k}=\frac{k C+A+k^{2} A+k B}{(1+k)^{2}}, \\
& B^{\prime \prime}=\frac{B^{\prime}+k A^{\prime}}{1+k}=\frac{k A+B+k^{2} B+k C}{(1+k)^{2}},
\end{aligned}
$$

$$
C^{\prime \prime}=\frac{A^{\prime}+k B^{\prime}}{1+k}=\frac{k B+C+k^{2} C+k A}{(1+k)^{2}}
$$

Now we can easily show that

$$
\begin{aligned}
A^{\prime \prime}-B^{\prime \prime} & =\frac{1-k+k^{2}}{(1+k)^{2}}(A-B), \\
B^{\prime \prime}-C^{\prime \prime} & =\frac{1-k+k^{2}}{(1+k)^{2}}(B-C), \\
C^{\prime \prime}-A^{\prime \prime} & =\frac{1-k+k^{2}}{(1+k)^{2}}(C-A)
\end{aligned}
$$

which tells us that the sides of the two triangles are parallel and hence the triangles are homothetic, the homothetic ratio being

$$
\frac{1-k+k^{2}}{(1+k)^{2}}
$$

Also solved by Maimouna Edy, Hull, P. Q., Canada; M. S. Klamkin, Polytechnic Institute of Brooklyn; Chih-yi Wang, University of Minnesota and the proposer.

Solution to Proposal 248:
Mathematics Magazine, 29, (1955-1956), 46.
Solution by the proposer. Considering the new position t^{\prime} of t very close to t, we have $M_{1} M_{1}^{\prime} / \sin \Delta \theta=C^{\prime} M_{1}^{\prime}!/ \sin M_{1}$ where M_{1}^{\prime} is close to M_{1} on Γ_{1}, and $\Delta \theta=\left(t, t^{\prime}\right)$; the angle between t and t^{\prime}.

Infinitesimally
and similarly

$$
d s_{1} / d \theta=C M_{1} / \sin \mu_{1}, \quad \mu_{1}=\left(t, t_{1}\right) \pm \pi
$$

$$
d s_{2} / d \theta=C M_{2} / \sin \mu_{2}, \quad \mu_{2}=\left(t, t_{2}\right) \pm \pi
$$

Having $\sin \mu_{1}=\sin \mu_{2}$, as t_{1} is parallel to t_{2}, we get

$$
d s_{1} / C M_{1}=d s_{2} / C M_{2}
$$

which in turn yields

$$
\left(d s_{1} / d \alpha\right) C M_{1}=\left(d s_{2} / d \alpha\right) C M_{2}
$$

i.e.

$$
R_{1} / C M_{1}=R_{2} / C M_{2}
$$

where $d \alpha$ is the infinitesimal angle relative to the parallel normals at M_{1}, N_{2}, and R_{1}, R_{2} the corresponding radii of curvature. The last ecuality proves the statement.

Also solved by Richard K. Guy, University of Malaya, Singapore and Chih-yi Wang, Lniversity of Minnesota.

Solution to Proposal 258:
Mathematics Magazine, 30, (1956-1957), 47.

An Orthocentric Locus

258. [January 1956] Proposed by Huseyin Demir, Zonguldak, Turkey.

A triangle $A B C$ inscribed in a circle varies such that $A B$ and $A C$ keep fixed directions. Find the locus of the or thocenter H.

1. Solution by Major H..S. Suóba Rao, Defense Science Organization, New Delhi, India. The vertical angle A and the base $i C$ are fixed in magnitude. Let $A_{1} B_{1} C_{1}$ be the isosceles triangle satisfying the conditions imposed on $A B C$. Let P be the mid-point of the smaller of the two arcs $A C$ of the circum-circle and similarly? the mid-point of the $\operatorname{arc} A b$. Let O be the centre of the circle. The points P andi) are fixed.

Take the diameter through A, as the y-axis and the perpendicular diameter as the x-axis. With reference to these axes we can represent any point on the circle $A B C$ by the parametric representation $a \cos t$, $a \sin t$.

Let $B_{1} \equiv\left(t_{2}\right), \quad C_{1} \equiv\left(t_{3}\right), \quad P \equiv\left(t_{4}\right)$ and $2 . \equiv\left(t_{5}\right)$.
Noting that angle $A_{1} B_{1} C_{1}$ angle $A_{1} C_{1} B_{1}=90^{\circ}-A / 2$ it can be easily shown that $t_{2}=\frac{3 \pi}{2}-A, \quad t_{3}=\frac{3 \pi}{2}+A, \quad t_{4}=\frac{A}{2}, \quad t_{5}=2 \pi-\frac{A}{2}$.

In any position of the triangle $4 B C$ let $t=\not \angle B_{1} O B=\not \angle C_{1} O C$. Then $B \equiv\left(t_{2}+t\right)$ and $C \equiv\left(t_{3}+t\right)$. Further, $E H$ being perpendicular to $A C$ is parallel to $O P$ and similarly $C H$ is parallel to $O Q$. The equations to $B H$ and $\dot{C H}$ are easily found to be
and

$$
x \operatorname{Sin} \frac{A}{2}-y \cos \frac{A}{2}=a \cos \left(t-\frac{3 A}{2}\right)
$$

$$
x \operatorname{Sin} \frac{A}{2}+y \cos \frac{A}{2}=a \cos \left(t+\frac{3 A}{2}\right) .
$$

Eliminating t between the two equations, the locus of H is found to be

$$
\frac{x^{2} \sin ^{2} \frac{A}{2}}{a^{2} \cos ^{2} \frac{3 A}{2}}+\frac{y^{2} \cos ^{2} \frac{4}{2}}{a^{2} \operatorname{Sin} \frac{2 A}{2}}=1
$$

This is an ellipse with its centre at O and semi axes

$$
\frac{a \operatorname{Cos} \frac{3 A}{2}}{\operatorname{Sin} \frac{A}{2}} \text { and } \frac{a \operatorname{Sin} \frac{3 A}{2}}{\operatorname{Cos} \frac{A}{2}}
$$

(An interesting corollary to this is that the loci of the ninepoint centre and centroid of the triangle $A B C$ are also ellipses).
II. Solution by the proposer. Let $O X, O Y$ be the lines parallel to external and internal bisectors of A respectively. Let the altitude $A H$ intersect these fixed lines at X, Y. Since $A O, A H$ are equally inclined to the bisectors of A, we have $A X=A C=A Y$. Hence $X Y=2 i=$ const.

We may think then of $X Y$ as a rod of constant length having the ends moving on $O X, O Y$. Now the angle A being constant, $B C$ will envelop, or the mid-point D of $B C$ will describe a circle with center O. Hence $A H=2 O D=2 R \cos A=$ const. This proves that μ is a fixed point of the moving bar $X A Y$. Hence H describes an ellipse. The semi-diameters of the ellipse are easily determined:

$$
a=H Y+A Y=H A=R(1+2 \cos A), \quad b=H X=X A-H A=R(1-2 \cos A) .
$$

Also solved by J. W. Clawson, Collegeville, Pennsylvania; R. K. Guy, University of Malaya, Singapore; Sister M. Stephanie, Georgian Court College, New Jersey; Harry D. Ruderman, The Bronx, New York and Chih-yi Wang, University of Minnesota.

Solution to Proposal 266:
Mathematics Magazine, 30, (1956-1957), 105.

Points Inverse in a circumcircle

266.[March 1956] Proposed by Huseyin Demir, Zonguldak, Turkey.

If M and M^{\prime} are points inverse to each other with respect to the circumcircle of a triangle $A B C$ then prove that:

$$
\begin{aligned}
& \angle B M C+\angle B M^{\prime} C=2 \angle A \\
& \angle C M A+\angle C M^{\prime} A=2 \angle B \\
& \angle A M B+\angle A M^{\prime} B=2 \angle C
\end{aligned}
$$

I. Solution by Richard K. Guy, University of Malaya, Singapore. In triangles $C O M$ and $M^{\prime} O C$ angle O is common and as $O M \cdot O M^{\prime}=O C^{2}$ we have $\frac{O C}{O M}=\frac{O M^{\prime}}{O C}$. Hence the triangles are similar and $\Varangle O M^{\prime} C=\not \subset O C M$. In the same way $\Varangle O M^{\prime} B=\Varangle C B M$. Adding these to $\Varangle O M C$ and $\Varangle O M B$ we have $\Varangle B M C+\not \subset B M^{\prime} C=\pi-\not \subset C O M+\pi-\not \subset B O M=\nvdash B O C=2 \not \subset A$.

Simmlarly we have $\Varangle C M A+\not \subset C M^{\prime} A=2 \not \subset B$ and $\nvdash A M B=\nvdash A M^{\prime} B=2 \nsucceq C$.
II. Solution by Maimouna Edy, Hull, PQ, Canada. Represent points A, B, C, M, M^{\prime} by complex numbers $z_{1}, z_{2}, z_{3}, z, z^{\prime}$ respectively. Let parentheses represent cross ratios and the bars the complex conjugate. We then have:

$$
\begin{equation*}
\left(z_{1}, z_{2}, z_{3}, z\right)=\overline{\left(z_{1}, z_{2}, z_{3}, z^{\prime}\right)} \tag{1}
\end{equation*}
$$

This says that the homographic transformation which sends z_{1}, z_{2}, z_{3} into $1,0, \infty$ respectively, that is the transformation of the given circle into the axis of reals, sends z and z^{\prime} into two conjugate complex points.
Now equation (1) reads explicitly

Evidently

$$
\frac{z-z_{2}}{\overline{z-z_{3}}} \cdot \frac{z_{1}-z_{3}}{z_{1}-z_{2}}=\frac{\overline{z^{\prime}-z_{2}}}{\overline{z^{\prime}-z_{3}}} \cdot \frac{\overline{z_{1}-z_{3}}}{\overline{z_{1}-z_{2}}}
$$

$$
\frac{z_{2}-z}{z_{3}-z} \div \frac{\overline{z_{2}-z^{\prime}}}{\overline{z_{3}-z^{\prime}}}=\frac{\overline{z_{3}-z_{1}}}{\overline{z_{2}-z_{1}}} \div \frac{z_{3}-z_{1}}{z_{2}-z_{1}}
$$

Therefore

$$
\left.\arg \left(\frac{z_{2}-z}{z_{3}-z}\right)+\arg \left(\frac{z_{2}-z^{\prime}}{z_{3}-z^{\prime}}\right)=-2 \arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)\right)^{+2 \arg }\left(\frac{z_{2}-z_{1}}{z_{3}-z_{1}}\right)
$$

This means that for oriented angles,

$$
\text { (angle } \overrightarrow{M C}, \overrightarrow{M B})+\left(\text { angle } \overrightarrow{I^{\prime} C}, \overrightarrow{I^{\prime} B}\right)=2(\text { angle } \overrightarrow{A C}, \overrightarrow{A B})
$$

The oriented angles form an additive group isomorphic with the multiplicative group of the unit circle. In other words, we may take arbitrary measures of our angles and add them $(\bmod 2 \pi)$. The other two relations are proven similarly.

Bankoff's solution also noted the necessity for proper orientation of the angles.

Also solved by Leon Bankoff, Los Angeles, California; J.W. Clawson, Collegeville, Pennsylvania; and the propser.

Solution to Proposal 298:
Mathematics Magazine, 31, (1957-1958), 56.

An Invariant Curve

298. [January 1957] Proposed by Huseyin Demir, Kandilli, Bolgesi, Turkey.
Let $y=f(x)$ be a curve with the following properties
a) $f(x)=f(-x)$
b) $f^{\prime}(x)>0$ for $x>0$
c) $f^{\prime \prime}(x)=0$

Determine the weight per unit length $w(x)$ at the point (x, y) such that when the curve is suspended under gravity by any two points on it, the curve will keep its original shape.

Solution by K.L. Cappel, Philadelphia, Pennsylvania. Assume the curve to be suspended at two arbitrary points A and B. Let the weight between A and the y intercept of the curve be W. Then at A, the tension in the curve can be resolved into vertical and horizontal components so that $W / H=\tan \theta$ or $W=H d y / d x$.

Now assume the right point of support to be moved from A to A^{\prime}. If the curve is to retain its shape, there must be no change in the forces at A. This can only be the case if H is a constant. If $d s$ is the length of the segment $A A^{\prime}$, and $d W$ is its weight, then the weight per unit length will be

$$
W_{x}=\frac{d W}{d s}=\frac{d W}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2} d x}} \quad \text { or, } \quad W_{x}=H \cdot \frac{d^{2} y / d x^{2}}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}
$$

which can be satisfied by any curve obeying the given conditions.
This problem is analagous to the problem of finding the optimum shape of a masonry arch, when the material of the arch is the only load to be supported, and it is desired to have the thrust load act along the neutral axis in order to eliminate bending moments.

Also solved by the proposer

Solution to Proposal 304:
Mathematics Magazine, 31, (1957-1958), 117.

CIRCLES CONNECTED WITH TRIANGLE

304. [March 1957] Proposed by Huseyin Demir, Kandill, Bolgesi, Turkey.

Let $A B C$ be a triangle, $A B \neq A C$, inscribed in a circle (O), and let K be the point where the exterior angle bisector of A meets (O). A variable circle with center at K meets $A B, A C$ at E and F respectively, such that A is not an interior point of $K E F$. Find the limiting position m of the common point M of $E F, B C$ as $E F$ approaches $B C$.

Solution by the Proposer. Let E^{\prime}, F^{\prime} be the points where (K) meets $A B, A C$ other than E, F. Let $M^{\mathbf{l}}$ be the common point of $B C$ with $E^{\boldsymbol{t}} F^{\mathbf{t}}$.

Applying the Menelaus theorem to $A B C$, considering $E F M, E^{\boldsymbol{p}} F^{\ell} M^{\mathbf{\prime}}$ as transversals, we have

$$
\frac{M B}{M C} \cdot \frac{F C}{F A} \cdot \frac{E A}{E B}=+1 \quad \frac{M^{\mathbf{\prime}} B}{M^{\mathbf{l}} C} \cdot \frac{F^{\mathbf{\ell}} C}{F^{\mathbf{\prime} A}} \cdot \frac{E^{\mathbf{\ell}} A}{E^{\mathbf{1}} B}=+1
$$

Multiplying these equalities member to member and observing that $E A=F^{\prime} A, E^{\mathbf{\prime}} A=F A$ we get

$$
\frac{M B}{M C} \cdot \frac{M^{\mathbf{1}} B}{M^{\mathbf{y}} C}=\frac{E B \cdot E^{\mathbf{1}} B}{F C \cdot F^{\mathbf{\prime}} C}
$$

Since in the last ratio the numerator and denominator are the powers of B, C with respect to the circle (K), and since these powers are equal (K is equidistant from B and C) $M B: M C=M^{\prime} C: M^{\prime} B$ follows. Hence the points M and M^{\prime} are symmetric points on $B C$. The limiting position m of M will also be symmetric point of m ', the limiting position of M^{\prime}. It is easy to see that m^{\prime} is the foot of $K A$, the exterior angle bisector of A. Hence the construction of M follows immediately.

Solution to Proposal 349:
Mathematics Magazine, 32, (1958-1959), 223.

A Bisector

349. [September 1958] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

If $A B C D, A E B K$ and $C E F G$ are squares of the same orientations, prove that B bisects $D F$.

Solution by Leon Bankoff, Los Angeles, California. Removing angle $C E B$ from the right angles $A E B$ and $C E F$, we find that angles $B E F, A E C$, $D E B$ are equal. But $D E=E C=E F$. Hence the triangles $B D E$ and $F B E$ are congruent and $F B=B D$. The collinearity of F, B, D is established by the fact that angle $E B D=90^{\circ}$.

Also solved by Norman Anning, Alhambra, California; D. A. Breault, Sylvania Electric Products, Inc., Waltham, Massachusetts; J.W.Clawson, Collegeville, Pennsylvania; Norbert Jay, New York, New York; Joseph D.E.Konhauser, Haller, Raymond and Brown, Inc., State College, Pennsylvania; Arne Pleijel, Trollhattan, Sweden; William Sanders, Mississippi Southern College; C.W.Trigg, Los Angeles City College, Dale Woods, Idaho State College, and the proposer.

Solution to Proposal 334:
Mathematics Magazine, 32, (1958-1959), 106.

An Irregular Area

334. [March 1958] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

Find the simplest expression for the area S enclosed by the arc $A M$ of a cycloid, the $\operatorname{arc} T M$ of the rolling circle $\Omega(a)$ and the base line segment AT.

Solution by J.W.Clawson, Collegeville, Pennsylvania. Draw MN and $C T$ perpendicular to $A T$. Let angle $M C T=\theta$ and $C T=a$. The area required $=\operatorname{area} A M N+$ area trapezoid $N M C T$ - area sector $M C T$.
Now, for $M, x=a(\theta-\sin \theta), y=a(1-\cos \theta)$.

Hence area $=a^{2} \int_{0}^{\theta}(1-\cos \theta)^{2} d \theta+\frac{a^{2} \sin \theta}{2}(2-\cos \theta)-\frac{a^{2} \theta}{2}$

$$
\begin{aligned}
& =3 / 2 a^{2} \theta-2 a^{2} \sin \theta+\left(a^{2} / 2\right) \sin \theta \cos \theta+a^{2} \sin \theta-\left(a^{2} / 2\right) \sin \theta \cos \theta \\
& =a^{2}(\theta-\sin \theta) \\
& =a x
\end{aligned}
$$

Also solved by Stanley P. Franklin, Memphis State University; Joseph D.E.Konhauser, State College, Pennsylvania; Arne Pleijel, Trollhattan, Sweden and the proposer.

Solution to Proposal 372:
Mathematics Magazine, 33, (1959-1960), 112.

A Trigonometric Identity

372. [March 1959] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

Prove the identity

$$
\begin{aligned}
\sin ^{2}\left(\theta_{1}+\theta_{2}+\cdots+\theta_{n}\right)= & \sin ^{2} \theta_{1}+\cdots+\sin ^{2} \theta_{n}+ \\
& 2 \sum_{1 \leqq i<j \leqq n}^{n} \sin \theta_{i} \sin \theta_{j} \cos \left(\theta_{1}+2 \theta_{i+1}+\cdots+2 \theta_{j-1}+\theta_{j}\right) .
\end{aligned}
$$

Solution by the proposer. We proceed by induction. The equality holds for $n=1$ and $n=2$. Let the property be true for $n=p$. Then setting

$$
\theta=\theta_{1}+\cdots+\theta_{p}
$$

it will suffice to prove the equality obtained by subtraction

$$
\sin ^{2}\left(\theta_{+}+\theta_{p-1}\right)-\sin ^{2} \theta=\sin ^{2} \theta_{p-1}-2 \sum_{i=1}^{p} \sin \theta_{1} \sin \theta_{p+1} \cdot \cos \left(\theta_{i}+2 \theta_{i+1}+\cdots+2 \theta_{p}+\theta_{p+1}\right)
$$

The left hand side, A, is seen to be equal to

$$
A=\sin \theta_{p+1} \sin \left(2 \theta+\theta_{p+1}\right)
$$

The right hand side, B, is equal to

$$
\begin{aligned}
B= & \sin ^{2} \theta_{p+1}+\sin \theta_{p+1} \sum_{i=1}^{p} 2 \sin \theta_{1} \cos \left(\theta_{i}+2 \theta_{i+1}+\cdots+2 \theta_{p}+\theta_{p+1}\right) \\
= & \sin ^{2} \theta_{p+1}+\sin \theta_{p+1} \sum_{i=1}^{p}\left[\sin \left(2 \theta_{i}+2 \theta_{i+1}+\cdots+2 \theta_{p}+\theta_{p+1}\right)\right. \\
& \left.-\sin \left(2 \theta_{i+1}+\cdots+2 \theta_{p}+\theta_{p+1}\right)\right] \\
= & \sin ^{2} \theta_{p+1}+\sin \theta_{p+1}\left[\left(\sin \left(2 \theta_{1}+2 \theta_{2}+\cdots+2 \theta_{p}+\theta_{p+1}\right)-\sin \theta_{p+1}\right]\right. \\
= & \sin \theta_{p-1} \cdot \sin \left(2 \theta_{1}+\cdots+2 \theta_{p}+\theta_{p+1}\right)=A
\end{aligned}
$$

The equality $A=B$ proves that the equality holds for $n=p+1$. The result follows by induction.

Solution to Proposal 380:
Mathematics Magazine, 33, (1959-1960), 172.

A System of Equations

380. [May 1959] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Solve the system of equations

$$
\begin{align*}
& x(z-a)+u(x+u)=0 \tag{1}\\
& y(x-b)+u(y+u)=0 \\
& z(y-c)+u(z+u)=0
\end{align*}
$$

where $a b c \neq 0$ and $a^{-1}+b^{-1}+c^{-1}=u^{-1}$.
Solution by Chih-yi Wang, University of Minnesota. By performing the operations multiply (1) by y, multiply (2) by z, multiply (3) by x and applying (2), (3), (1) respectively we get

$$
\begin{equation*}
x y z-a b y+a u y+a u^{2}+b u y-u^{3}=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
x y z-b c z+b u z+b u^{2}+c u z-u^{3}=0 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
x y z-c a x+c u x+c u^{2}+a u x-u^{3}=0 \tag{6}
\end{equation*}
$$

By performing the operations (4)-(5), (5) -(6), (6) -(4) we get

$$
\begin{align*}
& (a u+b u-a b) y+(b c-b u-c u) z=(b-a) u^{2} \tag{7}\\
& (c a-c u-a u) x+(c u+b u-b c) z=(c-b) u^{2} \tag{8}\\
& (a u+c u-c a) x+(a b-a u-b y) y=(a-c) u^{2} \tag{9}
\end{align*}
$$

Since the augmented matrix of (7), (8), (9) is of rank 2, we can calculate two variables in terms of the third, so we get

$$
\begin{align*}
& y=\frac{c^{2}}{a^{2}} z-\frac{c(b-a)}{a b} u \tag{10}\\
& x=\frac{b^{2}}{a^{2}} z+\frac{b(c-b)}{c a} u \tag{11}
\end{align*}
$$

By substituting (10) into (3) we get, after simplification,

$$
\left(\frac{c}{a} z-u\right)^{2}=0
$$

whence by aid of (10) and (11), we obtain

$$
x=(b / a) u, \quad y=(c / b) u, \quad z=(a / c) u .
$$

Note that we have used the relations $a b c \neq 0, a^{-1}+b^{-1}+c^{-1}=u^{-1}$ whenever necessary.

Also solved by D. A. Breault, Sylvania Electric Products, Inc., Waltham, Massachusetts; Victor Ch'in, Kent State University, Kent, Ohio; Melvin Hochster, Stuyvesant High School, New York; and the proposer.
Solution to Proposal 384:
Mathematics Magazine, 33, (1959-1960), 230.

An Infinite Group

384. [September 1959] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

Let $\left(a_{i j}\right)$ be a matrix of nth order the sum of the elements of whose rows equals 1 . Prove that the totality $\left[\left(a_{i j}\right)\right]$ form a group of infinite order.

Solution by D. A. Breault, Sylvania Electric Products, Inc. We assume that the proposed group operation is multiplication, and that the sum condition means that

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j}=1 \quad \text { for } \quad i=1,2, \ldots, n \tag{1}
\end{equation*}
$$

The system has
(1) Closure : for if $A=\left[a_{i j}\right]$, and $B=\left[b_{i j}\right]$, we have

$$
C_{i j}=(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

whence

$$
\sum_{j=1}^{n} c_{i j}=\sum_{j=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k j}=\sum_{k=1}^{n} a_{i k}\left(\sum_{j=1}^{n} b_{k j}\right)=\sum_{k=1}^{n} a_{i k}=1
$$

for each i.
(2) Associativity: which can be demonstrated by the use of summations similar to the above.
(3) Identity: The usual identity matrix $I=\delta_{i j}$ serves here also.
(4) Inverses: given a matrix A, which satisfies [1], it can be shown that A^{-1} satisfies [1] also, whenever it exists! Hence the totality of non-singular matrices satisfying [1] form a group, but not the unrestricted set.

Also solved by the proposer.

Solution to Proposal 398:
Mathematics Magazine, 34, (1960-1961), 51.
Simultaneous Quadratics
398. [January 1960] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Determine the roots of the equations

$$
\begin{aligned}
& x^{2}+y_{1} x+y_{2}=0 \\
& y^{2}+x_{1} y+x_{2}=0
\end{aligned}
$$

where the coefficients (real numbers) in one equation are the roots of the other.

Solution by Harry M. Gehman, University of Buffalo.
The relations between roots and coefficients give these four equations:

$$
\begin{aligned}
x_{1}+x_{2} & =-y_{1} \\
x_{1} x_{2} & =y_{2} \\
y_{1}+y_{2} & =-x_{1} \\
y_{1} y_{2} & =x_{2}
\end{aligned}
$$

From the first and third equations, $x_{2}=y_{2}$.
Case I. If $x_{2}=y_{2}=0$, then $x_{1}=-y_{1}=a$, where a is arbitrary, the equations are

$$
x^{2}-a x=0 \quad \text { and } \quad x^{2}+a x=0
$$

whose roots are $a, 0$ and $-a, 0$ respectively.
Case II. If $x_{2}=y_{2} \neq 0$, then $x_{1}=y_{1}=1$, and $x_{2}=y_{2}=-2$. Both equations become

$$
x^{2}+x-2=0
$$

whose roots are $1,-2$. Note that there is no need for the condition that the coefficients be real.

Also solved by D. A. Breault, Sylvania Electric Products, Inc., Waltham, Massachusetts; Sidney Kravitz, Dover, New Jersey; A. J. Kokar, School of Mines, Adelaide, Australia; Rostyslaw Lewyckyj, University of Toronto; Ernest E. Moyers, University of Mississippi; F. D. Parker, University of Alaska; Charles F. Pinzka, University of Cincinnati; Arne Pleijel, Trollhattan, Sweden; Robert E. Shafer, University of California Radiation Laboratory; C.M. Sidlo, Framingham, Massachusetts; William Squire, Southwestern Research Institute, San Antonio, Texas; Harvey Walden, Rensselaer Polytechnic Institute; Chih-yi Wang, University of Minnesota; Dale Woods, Northeastern Missouri State College; and the proposer.

Solution to Proposal 407:
Mathematics Magazine, 34, (1960-1961), 115.

Resistance In A Cube

407 [March 1960] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

The twelve edges of a cube are made of wires of one ohm resistance each. The cube is inserted into an electrical circuit by :
a) two adjacent vertices,
b) two opposite vertices of a face,
c) two opposite vertices of the cube.

Which offers the least resistance?
Solution by C. W. Trigg, Los Angeles City College.
It may be inferred that the least resistance occurs in (a) since there is a single-edge connector between the terminals. For confirmation:

In the figures, the direction of current flow is shown in each case. Below each cube a schematic diagram is shown wherein corners at the same potential, as determined by symmetry, are represented by the same point. Each situation is thus reduced to the simple case of repeated application of the laws of parallel circuits. So :
A)

$$
1 / R=1 / r+1 /\{r / 2+1 /[2 / r+1 /(r / 2+r+r / 2)]+r / 2\},
$$

whence $R=7 / 12 r$, where R is the resistance of the cube and r is 1 ohm.
B) E, B, H and C are at the same potential, so

$$
R=2 /\{1 / r+1 / r+1 /[r+r / 2]\} \quad \text { or } 3 r / 4 .
$$

(a)

C) $R=r / 3+r / 6+r / 3$

$$
\text { or } 5 r / 6 \text {. }
$$

Cases (a) and (c) are solved on pages 277-279 of Magnetism and Electricity by E. E. Brooks and A. W. Poyser, Longmans, Green and Co. (1920).

Case (c) is Quickie 32, MATHEMATICS MAGAZINE, March 1951, November 1959.

Also solved by Charles F. Pinzka, University of Cincinnati; and the proposer (partially): One incorrect solution was received.

(b)

(c)

Solution to Proposal 415:
Mathematics Magazine, 34, (1961), 178.

A Trigonometric Sum

415. [May 1960] Proposed by Huseyin Demir, Kandilli, Ere gli, Kdz., Turkey. Prove

$$
\sum_{p=0}^{n}\binom{n}{p} \cos (p) x \sin (n-p) x=2^{n-1} \sin n x
$$

Solution by Josef Andersson, Vaxholm, Sweden. (Translated and paraphrased by the editor.)

Making use of the formulas

$$
\sum_{p=0}^{n}\binom{n}{p}=2^{n} \quad \text { and } \quad\binom{n}{n-p}=\binom{n}{p}
$$

the original sum can be written

$$
\frac{1}{2} \sum_{p=0}^{n}\binom{n}{p} \sin n x+\frac{1}{2} \sum_{p=6}^{n}\binom{n}{p} \sin (n-2 p) x=2^{n-1} \sin n x+\frac{s}{2} .
$$

It remains to be proven that $s=0$. Now from the substitution $p=n-p^{\prime}$ it follows that

$$
s=\sum_{p^{\prime}=n}^{0}\binom{n}{n-p^{\prime}} \sin \left(2 p^{\prime}-n\right)=-s .
$$

Therefore $s=0$.
Also solved by J. L. Brown, Ordance Research Laboratory, Pennsylvania State University; L. Carlitz, Duke University; James C. Ferguson, Lynnwood, Washington; A.F. Hordam, University of New England, Armidale, NSW, Australia; Joseph D. E. Konhauser, HRB-Singer, Inc., State College, Pennsylvania; William Squire, Southwest Research Institute, San Antonio, Texas; Chih-Yi Wang, University of Minnesota, and the proposer.

Comment on Proposal 415:
Mathematics Magazine, 34, (1961), 308.

Comment on Problem 415

415. [May 1960, January 1961] Proposed by Huseyin Demiř, Kandilli, Eregli, Kdz., Turkey.

Prove

$$
\sum_{p=0}^{n}\binom{n}{p} \cos (p)_{x} \sin (n-p)_{x}=2^{n-1} \sin n x
$$

Comment by Louis Brand, University of Houston.
In the problem of a trigonometric sum a much simpler solution is as follows: Call the sum S and make the index change $p=n-q$; adding the two sums now gives

$$
2 S=\sum_{p=0}^{n}\binom{n \cdot}{p} \sin n x=2^{n} \sin n x
$$

Solution to Proposal 419:
Mathematics Magazine, 34, (1961), 239.

Constant Speed Curve

419. [September 1960] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Determine the path in a vertical plane such that when a particle moved, under gravity, with an initial velocity v_{0} from a point of the path, the particle maintained a constant speed along the path. Assume no friction.

Solution by the proposer.
Let $O x, O y$ be the axes of coordinates taken in the vertical plane such
that O_{y} points downward and O_{x} to the left. Let the particle be dropped from O. It reaches the velocity v_{0} at a point A of $O y$ with $y_{0}=O A=\frac{v_{0}{ }^{2}}{2 g}$. Since there is no friction, the velocity along the path is the projection of the velocity $v=\sqrt{2 g y}$, and we write $v_{0}=v \cos \alpha$ where

$$
v_{0}=\sqrt{2 g y_{0}}, \quad v=\sqrt{2 g y}, \quad \cos ^{2} \alpha=\frac{1}{\left(1+g^{2} \alpha\right)}=\frac{1}{\left(1+y^{\prime 2}\right)}
$$

and get $y_{0}=y /\left(1+y^{\prime 2}\right)$.
The variables separate and give

$$
\begin{gathered}
x=\int_{y_{0}}^{y} \frac{d y}{\sqrt{\left(y-y_{0}\right) / y_{0}}}=1 / 2 \sqrt{y_{0}} \sqrt{y-y_{0}} \\
y=\frac{4 x^{2}}{y_{0}}+y_{0} \\
y=\frac{8 g}{v_{0}^{2}} x^{2}+\frac{v_{0}^{2}}{2 g} .
\end{gathered}
$$

The path is a parabola tangent to $O y$ at $A, O y$ being the tangent at the vertex.

Solution to Proposal 425:
Mathematics Magazine, 34, (1961), 300.

Euler's Phi-function

425. [November 1960] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

If $n-1$ and $n+1$ are twin prime numbers, prove that $3 \phi(n) \leqq n$ where ϕ denotes Euler's ϕ-function.
I. Solution by Dermott A. Breault, Sylvania Electric Products, Inc., Waltham, Massachusetts.

If $n+1$ and $n-1$ are prime, then n is both even and a multiple of 3 , so that for some $m, n=6 m$, and we have:

$$
\phi(n)=\phi(6) \phi(m)=2 \phi(m),
$$

while

$$
\phi(m)=m \underset{p \mid m}{\Pi}\left(1-\frac{1}{p}\right) ;
$$

so

$$
3 \phi(n)=6 \phi(m)=6 m \underset{p \mid m}{\Pi}\left(1-\frac{1}{p}\right),
$$

but $6 m=n$ so,

$$
3 \phi(n)=n \prod_{p \mid m}\left(1-\frac{1}{p}\right) ;
$$

whence

$$
3 \phi(n) \leqq n,
$$

as required.
II. Solution by L. Carlitz, Duke University.

It is evidently necessary to assume $n>4$. Since $n-1$ and $n+1$ are primes and $n>4$ it follows that n is divisible by 3 . Also n must be even so that n is divisible by 6 . We shall now show that if

$$
\begin{equation*}
n=2{ }^{\alpha} \beta_{m} \quad(\alpha \geqq 1, \beta \geqq 1,(m, 6)=1), \tag{1}
\end{equation*}
$$

then

$$
\phi(n) \leqq \frac{n}{3} .
$$

Indeed from (1)

$$
\begin{equation*}
\phi(n)=2^{\alpha} 3^{\beta-1} \phi(m) \leqq 2^{\alpha} 3^{\beta-1} m=\frac{1}{3 n} . \tag{2}
\end{equation*}
$$

Remark: It is not difficult to show that

$$
\begin{equation*}
\phi(n)=\frac{n}{3} \tag{3}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
n=2^{\alpha} 3^{\beta}, \quad(\alpha \geqq 1, \beta \geqq 1) . \tag{4}
\end{equation*}
$$

We have seen above that (4) implies (3). Now if (3) holds it is clear that n is divisible by 3 . Put $n=3^{\alpha} k$, where $\propto \geqq 1$; then (3) becomes

$$
2 \cdot 3^{\propto} \phi(k)=n,
$$

so that n is even. Now put

$$
n=2^{\alpha} 3 \beta_{m} \quad(\alpha \geqq 1, \beta \geqq 1,(m, 6)=1) .
$$

Then if $m>1$ it follows from (2) that

$$
\phi(n)<\frac{n}{3} .
$$

This completes the proof of the equivalence of (3) and (4).
Also solved by Brother Alfred, St. Mary's College, California; Leon Bankoff, Los Angeles, California; Maxey Brooke, Sweeney, Texas; B. A. Hausman, S. J., West Baden College, Indiana; Vern Hoggatt, San Jose State College; Sidney Kravitz, Dover, New Jersey; D. L. Silverman, Fort Meade, Maryland; Dale Woods, Northeast Missouri State Teachers College; and the proposer.

Comment on Proposal 425:
Mathematics Magazine, 34, (1961), 433.

Comment on Problem 425

425. [November 1960 and May 1961] Proposed by Huseyin Dèmir, Kandilli, Eregli, Kdz., Turkey.

If $n-1$ and $n+1$ are twin prime numbers, prove that $3 \phi(n) \leqq n$ where ϕ denotes Euler's ϕ-function.

Comment by David A. Klarner, Napa, California.
The solution given by Dermott A. Breault contains an error. In the proof we find the statement, "If $n+1$ and $n-1$ are prime, n is even and a multiple of 3 , so that for some $m, n=6 m$, and we have

$$
\phi(n)=\phi(6) \phi(m)=2 \phi(m) . "
$$

This is only true when $(6, m)=1$. In fact, the twin primes 11,13 yield

$$
\phi(12)=\phi(6) \cdot \phi(2)=2,
$$

but $\phi(12)=4$. Therefore the method of proof given would have to be altered to make it valid.

Comment on Proposal 437:
Mathematics Magazine, 34, (1961), 371.

A Well Known Problem

437. [January 1961] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Prove or disprove the statement: The number of odd coefficients in the binomial expansion of $(a+b)^{[n]}$ is a power of 2 , the exponent of 2 being the number of 1 's appearing in the expression of n in the binary number system.

Editor's note: Joseph D. E. Konhauser, HRB-Singer, Inc., State College, Pennsylvania, pointed out that a simpler version of this problem appeared as Problem 7, Part II, in the Putnam Competition of 1956. The given problem appeared as Problem E 1288 in the American Mathematical Monthly in November 1957 with solution and references given in the May, 1958 issue.

Elementary Problem 1288, American Mathematical Monthly, 64, (1957), 671.
E 1288. Proposed by S. H. Kimball, University of Maine
The number of odd binomial coefficients in any finite binomial expansion is a power of 2 (Putnam Mathematical Competition, this Monthly [1957, p. 24]). Prove that the power of 2 is the number of 1 's in the binary scale expression for n in $(x+y)^{n}$.

Solution to Problem 1288:
American Mathematical Monthly, 65, (1958), 368.

Odd Binomial Coefficients

E 1288 [1957, 671]. Proposed by S. H. Kimball, University of Maine
The number of odd binomial coefficients in any finite binomial expansion is a power of 2 (Putnam Mathematical Competition, this Monthly [1957, p. 24]). Prove that the power of 2 is the number of 1 's in the binary scale expression for n in $(x+y)^{n}$.
I. Solution by T. R. Hatcher and J. A. Riley, Parke Mathematical Laboratories, Carlisle, Mass.

Let h and n be positive integers with $h<n$. We define the binary length of $n, L(n)$, to be the number of ones in the binary representation of n, and the binary capacity of $n, C(n)$, to be the exponent of the highest power of two which divides n. We say " h is contained in n," written $h \subset n$, if when h has a one in a certain binary place, n also has a one in the corresponding binary place; that is, the binary representation of h can be obtained from that of n by changing ones to zeros.

The following properties are easily proved:
(1) $C(n)$ is the number of terminating zeros in the binary representation of n.
(2) $C(n)=0$ if and only if n is odd.
(3) $C(a b)=C(a)+C(b), C(a / b)=C(a)-C(b)$.
(4) $L(n)=L(h)+L(n-h)$ if and only if $h \subset n$.
(5) $C(n)=1+L(n-1)-L(n)$.
(6) $C(n!)=n-L(n)$.
(7) $C\binom{n}{n}=L(h)+L(n-h)-L(n)$.

The corollary of the following theorem gives the solution.
Theorem. ($\left.\begin{array}{l}n \\ n\end{array}\right)$ is odd if and only if $h \subset n$.
Proof. If ($\left.\begin{array}{c}n \\ h\end{array}\right)$ is odd, $C\binom{n}{n}=0$ and by (7) $L(n)=L(h)+L(n-h)$. Thus, by (4), $h \subset n$. Conversely, if $h \subset n$, then $L(n)=L(h)+L(n-h)$ and $C\binom{n}{n}=0$.

Corollary. The number of integers h such that $\binom{n}{h}$ is odd is $2^{L(n)}$.
Proof. The number of integers h with $h \subset n$ and $L(h)=j$ is $\binom{L(n)}{j}$. Thus the number of integers h for which $\binom{n}{h}$ is odd is simply

$$
\sum_{j=0}^{L(n)}\binom{L(n)}{j}=2^{L(n)} .
$$

II. Remarks by Leo Moser, University of Alberta. Problem E 1288 is a special case of 4723 [1957, 116]. The solution of that problem is the following:

If $n=a_{0}+a_{1} p+a_{2} p^{2}+\cdots+a_{k} p^{k}, 0 \leqq a_{i}<p, i=0,1,2, \cdots, k$, then the number of solutions of $\left.\binom{n}{r}, p\right)=1, r=0,1, \cdots, n$, is $\prod_{i=0}^{k}\left(a_{i}+1\right)$.

The result in E 1288 is contained in J. W. L. Glaisher, "On the residue of a binomial coefficient with respect to a prime modulus," Quarterly Journal of Mathematics, vol. 30, 1899, pp. 150-156. More recently a proof was given by J. B. Roberts, "On binomial coefficient residues," Canadiä Journal of Mathematics, vol. 9, 1957, pp. 363-370.

Also solved by D. R. Brillinger, Leonard Carlitz, Joe Lipman, D. C. B. Marsh, Paul Schillo, and the proposer.

Solution to Proposal 440:
Mathematics Magazine, 34, (1961), 427.

Circle Packing

440. [March 1961] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Consider a packing of circles of radius r such that each is tangent to its six surrounding circles. Let a larger circle of radius R be drawn concentric with one of the small circles. If N is the number of small circles contained in the larger circle, prove that

$$
N=1+6 n+6 \sum_{p=1}^{n}\left[1 / 2\left(\sqrt{4 n^{2}-3 p^{2}}-p\right)\right]
$$

where $n=\left[1 / 2\left(\frac{R}{r}-1\right)\right]$, the square brackets designating the greatest integer function.

Solution by Alan Sutcliffe, Knottingley, Yorkshire, England.
The expression is not quite correct. For example when $\frac{R}{r}=2 \sqrt{3}+1$ we have $n=1$ and hence $N=7$, while the correct value is $N=13$. The correct expression is

$$
N=1+6[n]+6 \sum_{p=1}^{[n]}\left[1 / 2\left(\sqrt{4 n^{2}-3 p^{2}}-p\right)\right]=1+6 \sum_{p=0}^{[n]}\left[\sqrt{n^{2}-(3 / 5) p^{2}}-\frac{p}{2}\right]
$$

where $n=1 / 2\left(\frac{R}{r}-1\right)$.
To prove this we shall first assume unit distance between adjacent centers, and find the number of centers within a circle of radius r. Because of the triangular nature of the array of centers, we need consider only one of the six similar sectors of the circle as shown in the diagram, where the centers marked \circ are in the adjoining sector and the common center C
is in no sector. Clearly the number of centers contained within the sector

is the sum of the integral part of the lengths, such as $A B$, from $C E$ to $F G$. Let $C B=p$, which will be an integer. Then, since angle $B C D=30^{\circ}$, $C D=(\sqrt{3} / 2) p$ and $B D=p / 2$. As $A C^{2}=A D^{2}+C D^{2}$ we have

$$
n^{2}=\left(A B+\frac{p}{2}\right)^{2}+\frac{3}{4} p^{2}
$$

Hence

$$
A B=\sqrt{n^{2}-(3 / 4) p^{2}}-\frac{p}{2} .
$$

The number of centers within the sector is the sum of the integral part of this from $p=0$ to $[n]$. Since there are six sectors and the common center C, we have

$$
N=1+6 \sum_{p=0}^{[n]}\left[\sqrt{n^{2}-(3 / 4) p^{2}}-\frac{p}{2}\right] .
$$

Now in fact the centers are not unit distance, but $2 r$ apart. So that a radius $R=2 r n$ will contain N centers. Thus a radius $R=2 r n+r$ will contain N circles, giving $n=1 / 2\left(\frac{R}{r}-1\right)$, which completes the proof.

Comment on Proposal 440:
Mathematics Magazine, 35, (1962), 316.
440. [March and November 1961]. Comment by Huseyin Demir, Middle East Technical University, Akara, Turkey.

The number N given in the statement is correct. N denotes the number of small circles contained entirely by the larger circle (tangency being included). The number N offered by A. Sutcliffe includes also the partly contained circles and therefore both numbers are correct.

Solution to Proposal 458:
Mathematics Magazine, 35, (1962), 126.

De Moivre's Theorem

458. [September 1961] Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

A student used DeMoivre's theorem incorrectly as

$$
(\sin \alpha+i \cos \alpha)^{n}=\sin n \alpha+i \cos n \alpha .
$$

For what values of \propto does the equation hold for every integer n ?
Solution by Dermott A. Breault, Sylvania Applied Research Laboratory, Waltham, Massachusetts. Let

$$
z=\cos \theta+i \sin \theta
$$

Then using DeMoivre's Theorem correctly we have

$$
z^{n}=\cos n \theta+i \sin n \theta
$$

The proposed relation is that $(i / z)^{n}=\left(i / z^{n}\right)$ which implies that

$$
\left(1 / z^{n}\right)\left(i^{n}-i\right)=0 .
$$

But $z^{-n} \neq 0$, so there are no values of θ for which the proposal holds for every integer n, but it is an identity for all n of the form $n=4 k+1$.

Also solved by Brother U. Alfred, St. Mary's College, California; Leonard Carlitz, Duke University; Alan B. Delfino, St. Mary's College, California; P. D. Goodstein, University of Leicester, England; Harvey H. Green, R. C. A. Ascension Island (partially); Richard Levitt, Boston Latin School; David L. Silverman, Beverly Hills, California; Paul Stygar, Yale University; W. C. Waterhouse, Harvard University; and the proposer.

Solution to Proposal 472:
Mathematics Magazine, 35, (1962), 255.

Symmetric Conics

472 [January 1962]. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Let (C) be a conic and M be a variable point on it. Let T be the point symmetric to M with respect to the main axis, and t the tangent line at T. Denote the intersection of the perpendicular from M to t with the line joining T to the center of the conic by I. If M^{\prime} is symmetric to M with respect to I, prove that: 1. The locus of M^{\prime} is another conic (C^{\prime}) of the same kind as (C). 2. The conics (C) and (C^{\prime}) are confocal.

Solution by R. D. H. Jones, College of William and Mary, Virginia. Let the conic be $x^{2} / a^{2}+y^{2} / b^{2}=1$, let M be $(a \cos \Delta, b \sin \Delta)$ so T is the point $(a \cos \Delta$, $-b \sin \Delta)$, and t, the tangent at T, is $(x / a) \cos \Delta-(y / b) \sin \Delta=1 . M I$ is the line through M perpendicular to t and therefore is:

$$
\begin{equation*}
v-b \sin \Delta=\frac{-a \sin \Delta}{b \cos \Delta} \cdot(x-a \cos \Delta) \tag{1}
\end{equation*}
$$

The line joining T to the center of conic is

$$
\begin{equation*}
\frac{x}{a \cos \Delta}+\frac{y}{b \sin \Delta}=0 \tag{2}
\end{equation*}
$$

The point I is the intersection of (1) and (2) and is found to have coordinates:

$$
\frac{a\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}} \cos \Delta, \quad \frac{-b\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}} \sin \Delta
$$

By hypothesis M^{\prime} is symmetric to M with respect to I and therefore has coordinates:

$$
x_{M^{\prime}}=2 x_{I}-x_{M}=\frac{a^{3}+3 a b^{2}}{a^{2}-b^{2}} \cos \Delta
$$

similarly

$$
v_{M^{\prime}}=2 y_{I}-y_{M}=\frac{-\left(3 a^{2}, b+b^{3}\right)}{a^{2}-b^{2}} \sin \Delta .
$$

Let

$$
A=\frac{a\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}} \quad \text { and } \quad B=\frac{b\left(a^{2}+b^{2}\right)}{a^{2}-b^{2}}
$$

If a and b are real and a greater than b, then A and B are real and A greater than B. Therefore if C is an ellipse the locus of M^{\prime} is an ellipse. If, however, b is imaginary B is imaginary: hence if C is an hyperbola, so is the locus of M^{\prime}. It is readily shown that $A^{2}-B^{2}=a^{2}-b^{2}$: therefore the locus of M^{\prime} is confocal with C.

Solution to Proposal 487:
Mathematics Magazine, 36, (1963), 76.

The Square Root of a Matrix

487. Proposed by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Find the square root of the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Solution by Maurice Brisebois, Université de Sherbrooke, Canada.
Let X, U be arbitrary square matrices of order n, A a given non-singular matrix, \tilde{A} a matrix similar to $A, X_{\tilde{A}}$ an arbitrary nonsingular matrix permutable with $\tilde{A},(\lambda i)$ the set of all characteristic values of $A ; i=1, \cdots, n$ (they need not be all distinct), $E_{p_{i}}$ the identity matrix of order p_{i} with $\sum_{i} p_{i}=n, H_{p_{i}}$ the matrix with 1 's in the superdiagonal and 0 's elsewhere. Let $\left(\sqrt[n]{\lambda_{1} E_{p 1}+H_{p 1}} \cdots\right.$, $\sqrt[n]{\lambda_{n} E_{p n}+H_{p n}}$) be a matrix built with square matrices along the diagonal, matrices of order p_{i} of the type

$$
\left(\begin{array}{llll}
\lambda_{i} & 1 & & \\
& \cdot & \cdot & \\
& & \cdot & \\
0 & & & \cdot \\
\lambda_{i}
\end{array}\right) ; i=1, \cdots, n
$$

and having 0 's elsewhere.
Then all solutions of the matrix equation

$$
X^{m}=A
$$

are given by the formula:

$$
X=U X \tilde{A}\left(\sqrt[m]{\lambda_{1} E_{p_{1}}+H_{p_{1}}}, \cdots, \sqrt[m]{\lambda_{n} E_{p_{n}}+H_{p_{n}}}\right) \cdot X \tilde{\tilde{A}}^{-1} U^{-1}
$$

The particular case $m=n=2$ yields:

$$
X=U X \tilde{A}\left(\begin{array}{cc}
\sqrt{\lambda_{1}} & 0 \\
0 & \sqrt{\lambda_{2}}
\end{array}\right) X \overline{\tilde{A}}^{1} U^{-1}
$$

If the matrix A is singular, a more elaborate study is needed and the existence of the m th roots of A is bound with the existence of a system of admissible elementary divisors for X_{2} a matrix such that (X_{1}, X_{2}) is a matrix similar to X. (We call a system of elementary divisors for X_{2} "admissible" if, after raising X_{2} to the m th power, these elementary divisors split and generate the system of elementary divisors for A_{2} where $A=\left(A_{1}, A_{2}\right)$ with A_{1} and A_{2} similar to X_{1} and X_{2} respectively.)

Remarks. 1. In the general case, the solutions of $X^{m}=A(|A| \neq 0)$ are not expressible as polynomials in A unless all λ_{i} are distinct.
2. The solutions of $X^{m}=A$ are parametric in nature and the number of parameters present in $X_{\tilde{A}}$ is given by the number N of linearly independent
matrices commuting with A, where $N=\sum_{i+1}^{t}(2 i-1) n_{i} ;(t \leqq n), n_{i}$ being the degrees of the non-constant invariant polynomials of A.
3. For some results along this line, see Lusternik-Sobolen, "Elem. of Functional Analysis," p. 283, Dunford-Schwartz, "Linear Operations" (Part I), problem 31 on page 583 and Bellman "Introd. to Matrix Analysis," problems 1-3 on page 93.

Also solved by Brother U. Alfred, St. Mary's College, California; J. A. H. Hunter, Toronto, Canada; Francis D. Parker, University of Alaska; Gilbert Labelle, University of Montreal, Canada; C. F. Pinzka, University of Cincinnati; J. L. Stearn, Washington, D. C.; and the proposer.

Solution to Proposal 498:
Mathematics Magazine, 36, (1963), 201.

A Property of Multiplicative Functions

498. [November 1962] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

If m and n are integers and δ, D are their g.c.d. and l.c.m. respectively, and $d(n)$ denotes the number of divisors of $n, \phi(n)$ being the Euler function, prove that:

$$
\begin{align*}
d(m) d(n) & =d(\delta) d(D) \tag{1}\\
\phi(m) \phi(n) & =\phi(\delta) \phi(D) \tag{2}
\end{align*}
$$

Solution by L. Carlitz, Duke University.
The result is a special case of the following theorem. Let $f(n)$ be an arbitrary factorable function, that is

$$
f(m n)=f(m) f(n)
$$

for all m, n such that $(m, n)=1$. Then

$$
\begin{equation*}
f(m) f(n)=f(\delta) f(D) \tag{*}
\end{equation*}
$$

where $\delta=(m, n)$ and $D=[m, n]$, the greatest common divisor and the least common multiple, respectively.

The proof of $\left(^{*}\right)$ is immediate. If

$$
m=\Pi p^{r}, \quad n=\Pi p^{s}
$$

then

$$
\delta=\Pi p^{r^{\prime}}, \quad D=\Pi^{s^{\prime}}
$$

where $r^{\prime}=\min (r, s), s^{\prime}=\max (r, s)$. Since $r^{\prime}+s^{\prime}=r+s$, we have

$$
f(\delta) f(D)=\Pi p^{r^{\prime}+s^{\prime}}=\Pi p^{r+s}=f(m) f(n) .
$$

Also solved by Stephen R. Cavior, Duke University; Daniel I. A. Cohen, Brooklyn, New York; George Diderick, University of Wisconsin; Murray S. Klamkin, State University of New York at Buffalo; David A. Klarner, Humboldt State College, California; Gilbert Labelle, Université de Montréal; Jerry L. Pietenpol, Columbia University; Robert Prielipp, University of Wisconsin; Sam Sesskin, Hempstead, New York; David L. Silverman, Beverly Hills, California; Irene Williams, Converse College, South Carolina; and the proposer.

Solution to Proposal 509:
Mathematics Magazine, 36, (1963), 321.

An American Alphametic

509. [March 1963] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Solve the cryptarithm

$$
\begin{array}{ccccccc}
& U & N & I & T & E & D \\
& S & T & A & T & E & S \\
\hline A & M & E & R & I & C & A
\end{array}
$$

in the base 11, introducing the digit α.
Solution by Anton Glaser, Ogontz Campus, Pennsylvania State University.
My solution was obtained as follows:
(1) $A=1$ [In any numeration system, adding two digits can result in "carrying" at most unity.]
(2) $D \neq 0$ [Suppose $D=0$, then we get contradiction of $S=A=1$ vs. $S \neq A$]
(3) $S \neq 0$ [Similar to (2)]
(4) $E \neq 0$ [Suppose $E=0$, then $C=A=1$ contradicting $C \neq A$]
(5) $T \neq 0$ [Suppose $T=0$, then either $I=A=1$ vs. $I \neq A$ or $T=I=0$ vs. $T \neq I]$
(6) $U \neq 0$ and $S \neq 0$ by usual rules of cryptarithms
(7) $E \neq \alpha$ [Suppose $E=\alpha$, then $C=E=\alpha$ vs. $C \neq E$]
(8) $U+S>9$
(9) $U+S>\alpha$ if nothing was "carried" from previous column
(10) $D+S=11_{\text {(eleven) }}=12_{\text {ten }}=$ twelve

Only the digits shown in table at right are possible for	2	α
D and S, and only in the combinations shown.	3	9
	4	8
[Since $A=1$ neither D nor S can be 1]	5	7
	7	5
[Neither D nor S can be 6 , since either would imply	8	4
$D=S=6$ vs. $D \neq S$]	9	3
	α	2

(11) $T \neq 2, T \neq 3, T \neq 4$, and $T \neq 5$ [For $T=2, T=3, T=4$, and $T=5$ and the seven possible values of E that go with each of these four values of T, there resulted in each case a contradiction of some sort.]
(12) For $T=6$ and $E=5$, the remaining letters could be assigned a one-toone correspondence with the remaining digits that would satisfy the cryptarithm.

$$
8 \alpha 2653
$$

961659
1754201

Also solved by Josef Andersson, Vaxholm, Sweden; Merrill Barneby, University of North Dakota; Maxey Brooke, Sweeny, Texas; Harry M. Gehman, State University of New York at Buffalo; Wahin Ng, San Francisco, California; Norman Harelik, Mather High School, Chicago, Illinois; J. A. H. Hunter, Toronto, Ontario, Canada; Robert Sandling, Columbia University; Anita Skelton, Watervliet Arsenal, New York; David L. Silverman, Beverly Hills, California; Orvan Sommers, West Bend High School, Wisconsin; C. W. Trigg, Los Angeles City College; Hazel S. Wilson, Jacksonville University, Florida; Brother Louis F. Zirkel, Archbishop Molloy High School, Jamaica, New York; and the proposer.

Solution to Proposal 517:
Mathematics Magazine, 37, (1964), 56.

Parabolic Areas

517. [May 1963] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let F and d be the focus and directrix of a parabola. If M and N are any two points on the parabola and M^{\prime}, N^{\prime} are their respective projections on d, show that

$$
\frac{\text { Area } F M N}{\text { Area } N^{\prime} M^{\prime} M N}=\text { Constant. }
$$

I. Solution by Francis D. Parker, University of Alaska.

Using a focal length of F and orienting the directrix on the x-axis and the focus on the y-axis, we may use $y=x^{2} / 4 F+F$ as the equation of the parabola. If the abscissas of M and N are a and b, respectively, straightforward calculations yield

$$
\text { Area } M M^{\prime} N^{\prime} N=\int_{a}^{b} y d x=\frac{b-a}{12 F}\left[12 F^{2}+a^{2}+a b+b^{2}\right]
$$

and

$$
\text { Area } F M N=\frac{b-a}{24 F}\left[12 F^{2}+a^{2}+a b+b^{2}\right]
$$

Hence, the ratio of the areas is independent of F, a, and b, and is equal to $1 / 2$.

II. Solution by Joel Kugelmass, Stanford University and the National Bureau

 of Standards.It is clear that any parabola $f_{1}(x)$ can be transformed into another parabola $f_{2}(x)$ by applying a projective transformation P, an orthogonal transformation O and suitable rotations and translations. All of these transformations preserve the ratio of the area of the triangular region to that of the trapezoidal region. Hence we may transform any parabola to $y=x^{2}$. If we transform again so that $\lim M-N=0$, the areas clearly approach the length of their altitudes which in turn approaches p, the distance from the focus to the center. Now the function $z=\left(p+\epsilon_{1}\right) /\left(p+\epsilon_{2}\right)$, where the divisor and dividend are the areas of the regions, is monotone after a sufficient number of transformations ($\epsilon_{1}+\epsilon_{2}<\delta$) and hence approaches the limit. Now as all of the ratios are the same under the given transformations, the original ratio equals a constant and the theorem is proved.

[^0]Comment on Proposal 517:
Mathematics Magazine, 37, (1964), 517.
Comment on Problem 517
517. [May 1963 and January 1964]. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Comment by Josef Andersson, Vaxholm, Sweden.
This property of the areas characterizes in a way the parabola. If, in fact, $r=f(\phi)$ is the equation of a curve K in polar coordinates, associated to orthonormal coordinates $X^{\prime} O X, Y^{\prime} O Y$ and that for each point P of K we construct $P P^{\prime}$ equivalent to $O Q(r, 0)$ the point P^{\prime} traces the curve K^{\prime}. Let A_{1} and A_{2}
represent the areas between $X^{\prime} O X, O P, K$ and $K, P P^{\prime}, K^{\prime}, X^{\prime} O X$ respectively. The condition

$$
\begin{equation*}
\frac{1}{2} r^{2}=\frac{d A_{1}}{d \phi}=\frac{1}{2} \cdot \frac{d A_{2}}{d \phi}=\frac{1}{2} \cdot \frac{d A_{2}}{d(r \sin \phi)} \cdot \frac{d(r \sin \phi)}{d \phi}=\frac{1}{2} r \frac{d(r \sin \phi)}{d \phi} \tag{1}
\end{equation*}
$$

gives

$$
\frac{d(r \sin \phi)}{r \sin \phi}+\frac{d\left(\cot \frac{\phi}{2}\right)}{\cot \frac{\phi}{2}}=0, \quad 2 r \cos ^{2} \frac{\phi}{2}=\text { constant }
$$

Therefore, K is a parabola with O as focus, $X^{\prime} O X$ as axis and therefore K^{\prime} is the directrix. The hypothesis and the ratio $\frac{1}{2}$ is deducted immediately from (1) if we take at first one of the points at the vertex.

Solution to Proposal 529:
Mathematics Magazine, 37, (1964), 124.

Center of Curvature

529. [September 1963] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

A cycloid (cardioid) rolls on a straight line without sliding. Prove that the locus of the center of curvature of the curve at the point of tangency is a circle (ellipse).

Solution by P. R. Nolan, Department of Education, Dublin, Ireland.
Cycloid. Taking the regular case and putting $\omega t=\alpha$ we have

$$
x=a(\alpha-\sin \alpha), \quad y=a(1-\cos \alpha) .
$$

By the usual methods, the arc length from the origin is given by

$$
\begin{equation*}
S_{\alpha}=4 a(1-\cos \alpha / 2) \tag{i}
\end{equation*}
$$

and the radius of curvature by

$$
\begin{equation*}
P_{\alpha}=4 a \sin \alpha / 2 \tag{ii}
\end{equation*}
$$

Now if one arch of the cycloid rolls once along the y axis, the coordinates of the center of curvature at the point of tangency will be (P_{α}, S_{α}). Therefore from (i) and (ii), its locus is

$$
x^{2}+(y-4 a)^{2}=(4 a)^{2}
$$

which is a semicircle, negative values of $x(P)$ not being admissible, unless we consider the next arch to roll back along the y axis to complete the locus-circle.

Cardioid. In polar coordinates

$$
r=a(1-\cos \theta)
$$

As before, this gives

$$
\begin{equation*}
S_{\theta}=4 a(1-\cos \theta / 2) \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\theta}=(4 a / 3) \sin \theta / 2 . \tag{ii}
\end{equation*}
$$

Now if the cardioid rolls once along the upper edge of the x axis, the coordinates of the center of curvature at the point of tangency will be (S_{θ}, P_{θ}). Therefore from (i) and (ii), its locus is

$$
(x-4 a)^{2}+9 y^{2}=(4 a)^{2}
$$

which is the upper half of an ellipse, negative values of $y(P)$ not being admissible, unless the same cardioid is also rolled along the lower edge of the axis.

Also solved by the proposer.
Solution to Proposal 537:
Mathematics Magazine, 37, (1964), 277.

Extreme Overlap

537. [January, 1964]. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Determine the relative positions of an equilateral triangle and a square inscribed in the same circle so that their common area shall be an extremum.

Solution by Michael Goldberg, Washington, D. C.
The extrema are the symmetric relative positions of the square and the triangle.

The minimum overlap occurs when a side of the square is parallel to a side of the triangle as shown in Figure 1. The protruding portions of the triangle are marked A and B. For an infinitesimal rotation from this position, an increase in one of the B areas is compensated by the corresponding decrease in the other B, while the area A is reduced.

The maximum overlap occurs when a vertex of the square coincides with a vertex of the triangle as shown in Figure 2. The equal protruding portions of the triangle are marked C. For an infinitesimal rotation, an increase in one C is compensated by a corresponding decrease in the other C, while a portion of the triangle at the third vertex will now protrude.

If the radius of the circle is unity, the areas are given as follows:

$$
\begin{aligned}
A & =(2-\sqrt{ } 2) / 2 \\
2 B & =\sqrt{ } 3(\sqrt{ } 3-\sqrt{ } 2)^{2} / 2 \\
2 C & =(9-5 \sqrt{ } 3) / 4
\end{aligned}
$$

Hence,
$A+2 B=0.0933$, maximum protrusion, minimum overlap, $2 C=0.0849$, minimum protrusion, maximum overlap.

Fig. 1.

Fig. 2.

Solution to Proposal 544:
Mathematics Magazine, 37, (1964), 354.

A Conditional Alphametic

544. [March, 1964] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Solve the cryptarithm (alphametic)

$$
O N E+T W O+S I X=N I N E
$$

in the base 10 , with the following conditions:
a) $O N E<T W O<S I X$
b) $2|T W O, 6| S I X, 9 \mid N I N E$ where $a \mid b$ means " a divides b."

Solution by Sister Mary Joy, Notre Dame College, St. Louis, Missouri.
Since each letter represents a different digit, it can readily be seen from condition (a) that $O<T<S, S \geqq O+2, T \geqq O+1$, and from condition (b) that $T W O$ and $S I X$ are both even.

Observe that E occupies the unit's place in the sum. Thus, $O+X$ must be 10. Both X and O are single digits, neither can be zero, nor can the sum be greater than $1 E$. From the fact that N occupies the ten's place in the sum, it follows that $W+I=9$. Also, $W+I \neq 10$ as there is 1 ten carried from the unit's column.

Thus there are four possible ordered pairs for X and $O:(8,2),(2,8),(6,4)$ and $(4,6)$. Now pairs of addends for W and I are chosen such that neither addend duplicates a digit already taken. Possibilities for S are then chosen such that $6 \mid S I X$, where $S \geqq O+2$. If no duplication has occurred thus far, T is chosen so that $O+T+S=N I$. With still no duplication of digits, E is determined such that 9|NINE.

Consequently the solution is found to be

ONE	217
TWO	392
SIX	408
NINE	-1017

Also solved by Josef Andersson, Vaxholm, Sweden; Merrill Barneby, University of North Dakota; Maxey Brooke, Sweeny, Texas; J. L. Brown, Jr., Ordnance Research Laboratory, State College, Pennsylvania; David M. Cohen, East Midwood Day School, Brooklyn, New York; Martin J. Cohen, Beverly Hills, California; Michael P. Cozmanoff, Lew Wallace High School, Gary, Indiana; John A. Dossy, Illinois State University, Normal, Illinois; Joseph M. Fine, Massachusetts Institute of Technology; C. E. Franti, Berkeley, California; Philip Fung, Fenn College, Ohio; Harry M. Gehman, SUNY at Buffalo, New York; Murray Geller, Jet Propulsion Laboratory, Pasadena, California; Anton Glasser, Pennsylvania State University, Abington, Pennsylvania; Garold F. Gregory, Forest Disease Research Laboratory, Delaware, Ohio; C. T. Haskell, California State Polytechnic College, San Luis Obispo, California; Burton S. Holland, Harpur College, New York; William R. Holt, Delaware, Ohio; J. A. H. Hunter, Toronto, Ontario, Canada; Joseph D. E. Konhauser, HRB-Singer, Inc., State College, Pennsylvania; Janice Langan, Lew Wallace High School, Gary, Indiana; John W. Milsom, Texas A and I, Kingsville, Texas; Wa Hin Ng, San Francisco, California; C. C. Rice, IBM, Endicott, New York; Perry A. Scheinok, Hahnemann Medical College, Philadelphia, Pennsylvania; C. W. Trigg, San Diego, California; A. M. Vaidya, Pennsylvania State University; J. S. Vigder, Ottawa, Canada; Thomas Wojtan, Lew Wallace High School, Gary, Indiana; Dale Woods, Northeast Missouri State TeachersCollege; Charles Ziegenfus, Madison College, Virginia; and the proposer.

Solution to Proposal 563:
Mathematics Magazine, 38, (1965), 122.

Angles in a Hexagon

563. [September, 1964] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let $A, B^{\prime}, A^{\prime}, B$ be four consecutive vertices of a regular hexagon. If M is an arbitrary point of the circumcircle (in particular on $\operatorname{arc} A^{\prime} B^{\prime}$) and $M A, M B$ intersect $B B^{\prime}$ and $A A^{\prime}$ in the points E and F respectively, then prove that:
(a) $\Varangle M E F=3 \Varangle M A F$
(b) $\Varangle M F E=3 \Varangle M B E$.

Solution by Richard A. Jacobson, South Dakota State University.
Let $A B^{\prime}=x$ and $\Varangle M A F=a$. Noting that $\Varangle A B^{\prime} B=\Varangle A A^{\prime} B=\Varangle A M B$ $=90^{\circ}$, we have from triangles $A M B, A B^{\prime} E$ and $A A^{\prime} B$ that $A M=2 x \cos (30+a)$, $B M=2 x \sin (30+a), A E=x / \cos (30-a)$ and $B F=x / \cos a$. Thus in triangle $E M F$ we find that

$$
\begin{aligned}
\tan (\Varangle M E F) & =\frac{M F}{M E}=\frac{B M-B F}{A M-A E}=\frac{2 x \sin (30+a)-\frac{x}{\cos (a)}}{2 x \cos (30+a)-\frac{x}{\cos (30-a)}} \\
& =\frac{\frac{2 \sin (30+a) \cos (a)-1}{2 \cos (30+a) \cos (30-a)-1}}{\cos (30-a)} \\
& =\frac{2 \sin (30+2 a)-1}{\cos (a)} \cdot \frac{\cos (30-a)}{2 \cos (2 a)-1} \\
& =\frac{2 \sin (30+2 a) \cos (30-a)-\cos (30-a)}{2 \cos (2 a) \cos (a)-\cos (a)} \\
& =\frac{\sin (60+a)+\sin (3 a)-\cos (30-a)}{\cos (3 a)+\cos (a)-\cos (a)} \\
& =\frac{\sin (3 a)}{\cos (3 a)}=\tan (3 a) .
\end{aligned}
$$

Since $a \leqq 30^{\circ}$, we have $\Varangle M E F=3 \Varangle M A F$. Part (b) is done similarly.

Also solved by Leon Bankoff; Los Angeles, California; J. D. E. Konhauser, HRB-Singer, State College, Pennsylvania; Stanley Rabinowitz, Far Rockaway, New York; Sidney Spital, California State Polytechnic College; and the proposer.

Solution to Proposal 572:
Mathematics Magazine, 38, (1965), 242.

A Memorial Cryptarithm

572. [January, 1965] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

To the memory of President Kennedy. Mr. J. F. Kennedy was killed on November 22, 1963. That is, on the day 11-22-1963. Solve the cryptarithm

$$
J F \cdot(K E N+N E D Y)=(11+22) \cdot 1963
$$

in the decimal system.
Solution by Harry M. Gehman, SUNY at Buffalo, New York.
Since $(11+22) \cdot 1963$ is the product of the four primes $3,11,13$ and 151 , the only possible values of $J F$ are 13 and 39 . The latter case leads to a contradiction, and hence $J=1$ and $F=3$. From this, it follows that $K E N+N E D Y=4983$, which leads to $N=4, Y=9$, and either $K=2, E=7, D=0$ or $K=7, E=2, D=5$. Thus

$$
\begin{aligned}
(11+22) \cdot 1963 & =13 \cdot(274+4709) \\
& =13 \cdot(724+4259) .
\end{aligned}
$$

The fact that this problem has two solutions means (to a Republican) that $J F K$ was not unique.

Also solved by Robert H. Anglin, Danville, Virginia; Merrill Barneby, University of North Dakota; Murray Berg, Standard Oil Company, San Francisco, California; Charles R. Berndtson, Institute of Naval Studies, Cambridge, Massachusetts; Dermott A. Breault, Sylvania A.R.L., Waltham, Massachusetts; Robert Brodeur, Lachine, Canada; Maxey Brooke, Sweeny, Texas; Allan Chuck, San Francisco, California; R. J. Cormier, Northern Illinois University; Monte Dernham, San Francisco, California; Herta T. Freitag, Roanoke, Virginia; Philip Fung, Fenn College, Ohio; Anton Glaser, Pennsylvania State University, Ogontz Campus; Elmer E. Hunt, Jr., Boise Junior College, Boise, Idaho; J. A. H. Hunter, Toronto, Canada; Joel V. Kamer, Cambridge, Massachusetts; John Koelzer, University of Iowa; Wahin Ng, San Francisco, California; C. C. Oursler, Southern Illinois University (Edwardsville); Harry Panish, Pomona, California; Lawrence A. Ringenberg, Eastern Illinois University; Sidney Spital, California State Polytechnic College; P. K. Subramanian, Miami University, Ohio; Charles W. Trigg, San Diego, California; William K. Viertel, State University Agricultural and Technical College, Canton, New York; Dale Woods, Northeast Missouri State Teachers College; Charles Ziegenfus, Madison College, Virginia; and the proposer.

Solution to Proposal 587:
Mathematics Magazine, 39, (1966), 127.

A Trigonometric Inequality

587. [May, 1965] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Prove the following inequality

$$
\left(\frac{\theta+\sin \theta}{\pi}\right)^{2}+\cos ^{4} \frac{1}{2} \theta<1, \quad(-\pi<\theta<+\pi)
$$

Solution by Samuel Wolf, Linthicum Heights, Maryland.

$$
\left(\frac{\theta+\sin \theta}{\pi}\right)^{2}+\cos ^{4} \frac{\theta}{2}=\left(\frac{\theta+\sin \theta}{\pi}\right)^{2}+\left(\frac{1+\cos \theta}{2}\right)^{2}=F
$$

Differentiating, and setting to zero:

$$
\begin{aligned}
& \frac{2}{\pi^{2}}(\theta+\sin \theta)(1+\cos \theta)=\frac{1}{2}(1+\cos \theta)(\sin \theta) \\
& \frac{4}{\pi^{2}}(\theta+\sin \theta)=\sin \theta \quad[\cos \theta \neq-1] \\
& \frac{4}{\pi^{2}} \theta+\sin \theta\left(\frac{4}{\pi^{2}}-1\right)=0 . \quad \theta=0 \text { is a solution. } \\
& \frac{\sin \theta}{\theta}=\frac{4}{\pi^{2}-4}=\frac{4}{9.8696-4}=\frac{4}{5.8696}
\end{aligned}
$$

$$
\frac{\sin \theta}{\theta}=.6815
$$

$$
\theta= \pm 1.46 \text { (Jahnke and Emde, appendix p. 33) }
$$

$$
F_{0}=1 ; \quad F_{ \pm 1.46}=\left(\frac{1.46+.99}{\pi}\right)^{2}+\left(\frac{1+.11}{2}\right)^{2}=.92
$$

Taking the second derivative:

$$
G=\frac{2}{\pi^{2}}\left[(1+\cos \theta)^{2}+(\theta+\sin \theta)(-\sin \theta)\right]-\frac{1}{2}\left[-\sin ^{2} \theta+(1+\cos \theta) \cos \theta\right] .
$$

For $\theta=0, G<0$, so $\theta=0$ is a maximum.
For $\theta= \pm 1.46, G>0$, and $\theta= \pm 1.46$ are minimums.
Thus $F \leqq 1$.
(Note: The " = " sign is necessary.)
Also solved by Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan; C. B. A. Peck, State College, Pennsylvania; Simeon Reich, Haifa, Israel; Sidney Spital, California State Polytechnic College; K. L. Yocom, South Dakota State University; and the proposer.

Raymond E. Whitney, Lock Haven State College, Pennsylvania, pointed out the necessity of including the equals sign along with the inequality.

Comment on Proposal 587:
Mathematics Magazine, 39, (1966), 188.
Comment on Problem 587
587. [May, 1965, and January, 1966] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Prove the following inequality

$$
\left(\frac{\theta+\sin \theta}{\pi}\right)^{2}+\cos ^{4} \frac{1}{2} \theta<1, \quad(-\pi<\theta<+\pi) .
$$

Comment by the proposer.
The given inequality is equivalent to

$$
\left(\frac{\theta+\sin \theta}{\pi}\right)^{2}+\left(\frac{1+\cos \theta}{2}\right)^{2}<1
$$

Now consider the cycloid

$$
\begin{aligned}
& x=\theta+\sin \theta \\
& y=1+\cos \theta
\end{aligned}
$$

and the ellipse

$$
\frac{x^{2}}{\pi}+\frac{y^{2}}{4}=1
$$

They have common origin and equal diameters. The two curves have points in common at the three vertices. We can prove that at the neighborhoods of these points the cycloid lies inside the ellipse. Since their concavity is in the same direction, the cycloid lies wholly inside the ellipse except at the three points. The above inequality is the analytical interpretation for the property just mentioned.

Solution to Proposal 599:
Mathematics Magazine, 39, (1966), 134.

Linearly Dependent Vectors

599. [September, 1965] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

If a, b, and c are any three vectors in 3 -space, then show that the vectors

$$
a \times(b \times c), b \times(c \times a), c \times(a \times b)
$$

are linearly dependent.
Solution by Carl G. Wagner, Duke University.
By a well-known theorem of the vector calculus (see page 90 of Nickerson, Steenrod, and Spencer's Advanced Calculus for a proof based on axioms for a vector product):

$$
A \times(B \times C)=(A \cdot C) B-(A \cdot B) C
$$

Writing out the other vector products,

$$
\begin{aligned}
& B \times(C \times A)=(B \cdot A) C-(B \cdot C) A=(A \cdot B) C-(B \cdot C) A \\
& C \times(A \times B)=(C \cdot B) A-(C \cdot A) B=(B \cdot C) A-(A \cdot C) B
\end{aligned}
$$

Hence,

$$
A \times(B \times C)+B \times(C \times A)+C \times(A \times B)=0
$$

(This is known as the Jacobi Identity.)
Also solved by Joseph B. Bohac, St. Louis, Missouri; Dermott A. Breault, Sylvania Applied Research Laboratory, Waltham, Massachusetts; Dewey C. Duncan, Los Angeles, California; Philip Fung, Cleveland State University, Ohio; Mrs. A. C. Garstang, Boulder, Colorado; Carl Harris, Western Electric Company, Princeton, New Jersey; Stephen Hoffman, Trinity College, Connecticut; John E. Homer, Jr., St. Procopius College, Illinois; Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Mich.; John Kieffer, University of Missouri at Rolla; E. S. Langford, U. S. Naval Postgraduate School; Lieselotte Miller, Georgia Institute of Technology; Stanley Rabinowitz, Far Rockaway, New York; Kenneth A. Ribet, Brown University; Richard Riggs, Jersey City State College; Howard L. Walton, Yorktown High School, Arlington, Virginia; K. L. Yocum, South Dakota State University; and the proposer.

Solution to Proposal 600:
Mathematics Magazine, 39, (1966), 189.

Related Triangles

600. [November, 1965] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

If the area of a triangle $A B C$ is S and the areas of the in- and ex-contact triangles are T, T_{a}, T_{b}, T_{c}, then show that

$$
\begin{align*}
& T_{a}+T_{b}+T_{c}-T=2 S \tag{1}\\
& T_{a}^{-1}+T_{b}^{-1}+T_{c}^{-1}-T^{-1}=0 . \tag{2}
\end{align*}
$$

Solution by the proposer.
Let I be the incenter and $D E F$ be the in-contact triangle of $A B C$ and let R, r be circumradius and inradius respectively. Then

$$
\begin{aligned}
I E F / S & =\frac{1}{2} r^{2} \sin (\pi-A) /\left(\frac{1}{2} b c \sin A\right) \\
& =r^{2} / b c=a r^{2} / a b c=a r^{2} / 4 R S
\end{aligned}
$$

or

$$
I E F=a r^{2} / 4 R
$$

and similarly

$$
\begin{aligned}
& I F D=b r^{2} / 4 R \\
& I D E=c r^{2} / 4 R .
\end{aligned}
$$

Thus

$$
T=I E F+I F D+I D E=(a+b+c) r^{2} / 4 R=2 u r \cdot r / 4 R=S / 2 R
$$

and similarly

$$
T_{a}=S r_{a} / 2 R, \quad T_{b}=S r_{b} / 2 R, \quad T_{c}=S r_{c} / 2 R
$$

We then have

$$
\begin{align*}
T_{a}+T_{b}+T_{c}-T & =S\left(r_{a}+r_{b}+r_{c}\right) / 2 R-S r / 2 R \tag{1}\\
& =S(4 R+r-r) / 2 R=2 S
\end{align*}
$$

$$
\begin{equation*}
T_{a}^{-1}+T_{b}^{-1}+T_{c}^{-1}-T^{-1}=2 R\left(1 / r_{a}+1 / r_{b}+1 / r_{c}-1 / r\right) / S b=0 . \tag{2}
\end{equation*}
$$

Also solved by P. N. Bajaj, Western Reserve University; Stanley Rabinowitz, Far Rockaway, New York; G. L. N. Rao, J. C. College, Jamshedpur, India.

Solution to Proposal 609:
Mathematics Magazine, 39, (1966), 248.

CRYPTA-EQUIVALENCE

609. [January, 1966] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Solve the following cryptarithm in the decimal system:

$$
4 \cdot N I N E=9 \cdot F O U R
$$

Solution by J. D. E. Konhauser, University of Minnesota.
The products $4 \cdot E$ and $9 \cdot R$ must have the same units digit. Therefore, the
only possible (E, R) combinations are (1, 6), (3, 8), (5, 0), (7, 2), and (9, 4). Since 4 and 9 are relatively prime, 9 must divide $2 N+I+E$.

Case $(1,6)$: If $E=1,9$ must divide $2 N+I+1$, leading to the following (N, I) combinations: $(4,0),(3,2),(7,3),(2,4),(5,7),(9,8)$, and $(4,9)$. The corresponding values for $F O U R$ are $1796,1436,3276,1076,2556,4396$, and 2196. The first two, the fourth, and the last must be rejected since $E=1$. The third is out since $N=7$. The fifth is out since 5 is repeated. The sixth is out since $N=9$.

Similar analysis applied to the remaining cases leads to the solutions given below:

Case $(3,8): 4 \cdot 4743=9 \cdot 2108$.
Case $(5,0): 4 \cdot 6165=9 \cdot 2740$.
Case $(7,2): 4 \cdot 6867=9 \cdot 3052$.
Case $(9,4): 4 \cdot 5859=9 \cdot 2604$.
Also solved by Monte Dernham, San Francisco, California; Samuel P. Hoyle, Jr., University of Virginia; Sidney Kravitz, Dover, New Jersey; C. C. Oursler, Southern Illinois University (Edwardsville); Richard Riggs, Jersey City State College, New Jersey; Jerome J. Schneider, Chicago, Illinois; and Charles W. Trigg, San Diego, California.

Partial solutions were submitted by Merrill Barneby, Wisconsin State University (La Crosse); Charles R. Berndtson, Massachusetts Institute of Technology; Lindley J. Burton, Lake Forest College, Illinois; Anton Glaser, Pennsylvania State University (Ogontz); J. A. H. Hunter, Toronto, Canada; Beatriz Margolis, University of Maryland; John W. Milsom, Slippery Rock State College, Pennsylvania; William L. Mrozek, Wyandotte, Michigan; Sam Newman, Atlantic City, New Jersey; C. R. J. Singleton, Petersham, Surrey, England; Lowell Van Tassel, San Diego City College; Gary B. Weiss, New York University, School of Medicine; Donald R. Wilder, Rochester, New York; Dale Woods, Missouri State Teachers College; and the proposer.

Solution to Proposal 628:
Mathematics Magazine, 40, (1967), 102.

Pythagorean Alphametic

628. [September, 1966] Proposed by B. Suer and Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Solve the alphametic,

$$
\operatorname{COS}^{2}+S I N^{2}=U N O^{2}
$$

in the decimal system.
Solution by J. A. H. Hunter, Toronto, Ontario, Canada.
We have $S^{2}+N^{2} \equiv O^{2}(\bmod 10)$, and obviously $S \neq$ zero. For each N, for $N=0,1, \cdots, 9$, we tabulate possible S and corresponding O values, bearing in mind digital "square-endings."

Since $U>S$, we then test each possible $U N O$ value to find its representations (if any) as sum of two squares: bearing in mind the conditions which are required for this to be possible. Where representation as sum of squares is possible, we can then note corresponding $S I N$ and $C O S$ from the well-known solution:

$$
\left(x^{2}+y^{2}\right)^{2} k^{2}=\left(x^{2}-y^{2}\right)^{2} k^{2}+(2 x y)^{2} k^{2} .
$$

The working is somewhat tedious, but not unduly so. It is found that uniquely we have

$$
391^{2}+120^{2}=409^{2}
$$

Also solved by R. H. Anglin, Danville, Virginia; Merrill Barnebey, Wisconsin State University at LaCrosse; Sarah Brooks, Utica Free Academy, New York; Jack Dix, Rutgers University; Charles R. Fleenor, Ball State University, Indiana; Michael Goldberg, Washington, D. C.; Jerome J. Schneider, Chicago, Illinois; Charles W. Trigg, San Diego, California; and the proposers.

Solution to Proposal 639:
Mathematics Magazine, 40, (1967), 166.

A Convex Quadrilateral Inequality

639. [November, 1966] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let $A B C D$ be a convex quadrangle and P be the intersection of diagonals $A C$ and $B D$. Let the distance of P from the sides $A B=a, B C=b, C D=c, D A=d$ be x, y, z, and t respectively. Prove that

$$
x+y+z+t<\frac{3}{4}(a+b+c+d) .
$$

Solution by Leon Bankoff, Los Angeles, California.
Let the bisectors of the angles between the diagonals $A C$ and $B D$ meet $A B, B C, C D, D A$ in R, S, T, U.

By a corollary of the Erdös-Mordell Theorem,

$$
\begin{aligned}
2(P S+P T) & <P B+P C+P D \\
2(P T+P U) & <P C+P D+P A \\
2(P U+P R) & <P D+P A+P B \\
2(P R+P S) & <P A+P B+P C
\end{aligned}
$$

or $4(P R+P S+P T+P U)<3(P A+P B+P C+P D)$.
This inequality is stronger than the one proposed because

$$
x+y+z+t \leqq P R+P S+P T+P U
$$

and $P A+P B+P C+P D<a+b+c+d$.
Also solved by Leon Bankoff, Los Angeles, California (second solution); Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan; C. B. A. Peck, Ordnance Research Laboratory, State College, Pennsylvania; Stanley Rubinowitz, Far Rockaway, New York and the proposer.

Solution to Proposal 649:
Mathematics Magazine, 40, (1967), 279.

An Alphametic

649. [March, 1967] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Solve the cryptarithm

$$
\begin{array}{r}
T H R E E \\
+\quad F O U R \\
\hline S E V E N
\end{array}
$$

in the decimal system such that:
3 does not divide $T H R E E$ in which the digit 3 is missing; 4 does not divide $F O U R$ in which the digit 4 is missing;
7 does not divide $S E V E N$ in which the digit 7 is missing.

Solution by Harry M. Gehman, SUNY at Buffalo, New York.
Let us first solve the cryptarithm, given only that
(a) the digit 3 is missing from $T H R E E$;
(b) the digit 4 is missing from $F O U R$;
(c) the digit 7 is missing from $S E V E N$.

The problem has seven solutions:

(1)	16544	(2)	47266
	7805		9102
	24349		56368
(3)	75244	(4)	79244
	9102		5102
	84346		84346
(5)	17544	(6)	49266
	6805		7102
	24349		56368
(7)	24811		
	6708		

The condition (d) that 3 does not divide $T H R E E$ eliminates solutions (5) and (6). The condition (e) that 4 does not divide $F O U R$ eliminates (7). The condition (f) that 7 does not divide $S E V E N$ does not eliminate any solution.

Therefore the problem as proposed has four solutions: (1)-(4).
If we ignore conditions (d) (e) (f) but retain conditions (a) (b) (c) with the additional condition indicated we have unique solutions as follows:
(g) $T H R E E$ contains the digit 8 . Solution (7).
(h) $S E V E N$ contains the digit 1 . Solution (7).
(i) $F O U R$ contains both the digits 5 and 6 . Solution (5).
(j) $T H R E E$ contains neither 6 nor 7 . Solution (7).
(k) $T H R E E$ contains both 6 and 7. Solution (2).
(1) THREE contains both 1 and 2. Solution (7).
(m) $T H R E E$ contains neither 5, 6 nor 7 . Solution (7).
(n) $T H R E E$ contains neither 5, 7 nor 9 . Solution (7).
and so on.
The fact that solution (7) occurs so frequently in this list seems to indicate that it has a pattern of digits essentially different from the other six solutions. From the standpoint of numerology, this has some deep significance, I am sure.

Solution to Proposal 680:
Mathematics Magazine, 41, (1968), 219.

A Circular Locus

680. [January, 1968] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let E be an ellipse and $t^{\prime}, t^{\prime \prime}$ be two variable parallel tangents to it. Consider a circle C, tangent to $t^{\prime}, t^{\prime \prime}$ and to E externally. Show that the locus of the center of C is a circle.

Solution by the proposer.
Let the ellipse be given by the equation

$$
\begin{equation*}
x^{2} / a^{2}+y^{2} / b^{2}=1 \tag{1}
\end{equation*}
$$

Denoting the center and radius of (C) by (α, β) and r, from $r=\left(0, t^{\prime}\right)$, we have

$$
\begin{equation*}
r^{2}=\left(a^{2} \beta^{2}+b^{2} \alpha^{2}\right) /\left(\alpha^{2}+\beta^{2}\right) \tag{2}
\end{equation*}
$$

r is also given by

$$
\begin{equation*}
(x-\alpha)^{2}+(y-\beta)^{2}=r^{2} \tag{3}
\end{equation*}
$$

such that the normal at $T(x, y)$ of (E) passes through the center C.
$C T$ is an extremal distance of $C(\alpha, \beta)$ to (E). To determine it we use the method of Lagrange multipliers. Let

$$
F(x, y)=(x-\alpha)^{2}+(y-\beta)^{2}+\lambda\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right)
$$

where λ is determined by

$$
\begin{align*}
& 1 / 2 F_{x}=x-\alpha+\lambda x / a^{2}=0 \\
& 1 / 2 F_{y}=y-\beta+\lambda y / b^{2}=0 \tag{4}
\end{align*}
$$

and (1). Eliminating x, y, α, β we obtain a quartic equation in λ. So we proceed in a different way. Supposing that the statement is true, we have

$$
\begin{equation*}
O C^{2}=\alpha^{2}+\beta^{2}=(a+b)^{2} \tag{5}
\end{equation*}
$$

Solving α, β from (4) and setting in (5) and comparing the result with (1) we get $\lambda=a b$.

We observe that if we choose $\lambda=a b$, the three equations (1), (2), (3) are consistent and this consistency gives $\alpha^{2}+\beta^{2}=(a+b)^{2}$ proving that the locus of $C(\alpha, \beta)$ is a circle.

Also solved by Michael James Smithson, Bellevue, Washington.

Comment on Proposal 680:
Mathematics Magazine, 42, (1969), 162.
Comment on Problem 680
680. [January and September, 1968] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let E be an ellipse and $t^{\prime}, t^{\prime \prime}$ be two variable parallel tangents to it. Consider a circle C, tangent to $t^{\prime}, t^{\prime \prime}$ and to E externally. Show that the locus of the center of C is a circle.

Comment by A. W. Walker, Toronto, Canada.
Many interesting properties of an ellipse are associated with its so-called Chasles circles of radius $a \pm b$ concentric with the ellipse. If the center of the variable circle C lies on the inward normal, its locus is the inner Chasles circle. The result in Problem 680 was established by Mannheim, Nouvelles Annales de Math., 4, 3, (1903) 483, and is equivalent to the following old Japanese theorem (Iwata, 1862):

If an ellipse touches externally two equal nonoverlapping fixed circles and their parallel common tangents, the sum of its major and minor axes is equal to the distance between the centers of the circles.

See Tôhoku Math. J., (1), 11, (1917) 65, where with rather obscure justification, it is asserted that the theorem is untrue!
Solution to Proposal 724:
Mathematics Magazine, 42, (1969), 274.

Triangle Probability

724. [March, 1969] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Find the probability that for a point P taken at random in the interior of a triangle $A B C(a \geqq b \geqq c)$, the distances of P from the sides of $A B C$ form the lengths of sides of a triangle.

Solution by L. Carlitz, Duke University.
Let the internal angle bisectors meet the sides $B C, C A, A B$ in L, M, N, respectively. Let x, y, z denote the distances from the point P to the sides $B C$, $C A, A B$. The equation $x=y+z$ represents a straight line, namely $M N$. Similarly $y=z+x$ represents $N L, z=x+y$ represents $L M$. The incenter I is in the interior of the triangle $L M N$; hence by continuity the point P must be restricted to the interior of $L M N$, so that the desired probability is equal to

$$
p=\frac{\text { area } L M N}{\operatorname{area} A B C}=\frac{\Delta_{0}}{\Delta} .
$$

Now

$$
C L=\frac{a b}{b+c}, \quad C M=\frac{a b}{a+c},
$$

so that

$$
\text { area } C L M=\frac{1}{2} \frac{a^{2} b^{2} \sin \gamma}{(a+c)(b+c)}=\frac{a b \Delta}{(a+c)(b+c)} .
$$

By symmetry

$$
\text { area } A M N=\frac{b c \Delta}{(b+a)(c+a)}, \quad \text { area } B L N=\frac{a c \Delta}{(a+b)(c+b)} .
$$

Thus

$$
\begin{aligned}
\Delta_{0} & =\operatorname{area} L M N=\Delta-\sum \frac{b c \Delta}{(b+a)(c+a)} \\
& =\Delta\left\{1-\frac{\sum b c(b+c)}{(a+b)(b+c)(c+a)}\right\} \\
& =\Delta \frac{2 a b c}{(a+b)(b+c)(c+a)}
\end{aligned}
$$

so that

$$
p=\frac{2 a b c}{(a+b)(b+c)(c+a)} .
$$

Since $a+b \geqq 2 \sqrt{a b}$, it follows that

$$
p \leqq \frac{1}{4}
$$

with equality only when $a=b=c$.
Also solved by Michael Goldberg, Washington, D.C.; C. B. A. Peck, Ordnance Research Laboratory, State College, Pennsylvania; F. G. Schmitt, Jr., Berkeley, California (partially); Paul J. Zwier, Palo Alto, California; and the proposer.

Solution to Proposal 738:
Mathematics Magazine, 43, (1970), 109.
738. Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

There is a river with parallel and straight shores. A is located on one shore and B on the other, with $A B=72$ miles. A ferry boat travels the straight path $A B$ from A to B in four hours and from B to A in nine hours. If the boat's speed on still water is $v=13 \mathrm{mph}$, what is the velocity of the flow?

$$
\begin{aligned}
13 \mathrm{mph}+s & \geqq 18 \mathrm{mph}, \quad \text { and thus } \\
s & \geqq 5 \mathrm{mph}
\end{aligned}
$$

Returning from B to A, the maximum possible magnitude for the vector sum is $13 \mathrm{mph}-s$. Thus,

$$
\begin{aligned}
13 \mathrm{mph}-s & \geqq 8 \mathrm{mph} \\
s & \leqq 5 \mathrm{mph} .
\end{aligned}
$$

Since $s \geqq 5 \mathrm{mph}$ and $s \leqq 5 \mathrm{mph}, s=5 \mathrm{mph}$.
An alternate method would be to allow the width of the river to be m miles and find s for any m. It is possible to find m using this method. It involves solving the following equation:

$$
13 \sqrt{5184-m^{2}}=4 \sqrt{13689-m^{2}}+9 \sqrt{2704-m^{2}}
$$

The only solution is $m=0 \mathrm{mph}$. With this value of m it follows that $s=5$ mph .

Also solved by Richard L. Breisch, University of Colorado; Bruce A. Broemser, El Sobrante, California; Raphael T. Coffman, Richland, Washington; George F. Corliss, Michigan State University; Mickey Dargitz, Ferris State College, Michigan; Gerald C. Dodds, HRB-Singer, Inc., State College, Pennsylvania; Frank Eccles, Phillips Academy, Massachusetts; W. W. Funkenbusch, Michigan Technological University; Michael Goldberg, Washington, D. C.; John M. Howell, Littlerock, California; Alfred Kohler, Long Island University, New York; Lew Kowarski, Morgan State College, Maryland; J. R. Kuttler, Johns Hopkins University; Joseph O'Rourke, St. Joseph's College, Pennsylvania; C. D. O'Shaughnessy, University of Saskatchewan; John E. Prussing, University of Illinois; John R. Ray, Clemson University; Simeon Reich, Israel Institute of Technology, Haifa, Israel; Ray B. Robinson, Butler, Tennessee; Steve Rohde, Lehigh University; E. F. Schmeichel, College of Wooster, Ohio; W. A. Schmidt, Texas A and M University; E. P. Starke, Plainfield, New Jersey; Charles W. Trigg, San Diego, California; A. W. Walker, Toronto, Canada; Sam Zaslavsky, City University of New York; and the proposer.

Solution to Proposal 743:
Mathematics Magazine, 43, (1970), 169.

Tetrahedral Inequality

743. [November, 1969] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let P be an interior point of a regular tetrahedron, $T \equiv A_{1} A_{2} A_{3} A_{4}$, with $p_{i}=$ $P A_{i}$, and let $x_{i j}$ denote the distance of P from the edge $A_{i} A_{j}$. Then prove

$$
\sum_{i=1}^{4} p_{i} \geqq 2 \sqrt{ } 3 / 3 \sum_{i<j} x_{i j}
$$

equality holding if and only if P is at the center O of T.
Solution by Michael Goldberg, Washington, D.C.
Given a base of fixed length and the sum of two other lengths, the triangle of greatest height is obtained when the triangle is isosceles. Similarly, given the same base, and the sum of three other lengths to form three triangles by using the three pairs of these three sides, the sum of the heights is maximized when the triangles are congruent isosceles triangles. This can be generalized to n triangles. Hence, the sum of the distances of P from the edges of a regular tetrahedron divided by the sum of the distances of P from the vertices is maximized when P is at the center of the tetrahedron.

If e is the length of the edge of the tetrahedron then the distance h between opposite edges is given by

$$
h^{2}+(e / 2)^{2}+(e / 2)^{2}=e^{2}, \quad \text { or } \quad h=e / \sqrt{2}
$$

The distance R from the center to a vertex is given by

$$
R^{2}=(e / 2)^{2}+(h / 2)^{2}=e^{2} / 4+e^{2} / 8, \quad \text { or } \quad R=\sqrt{3} e / 2 \sqrt{2}
$$

Hence, when P is at the center, the ratio of the sums is

$$
4 R / 3 h=(2 e \sqrt{3} / \sqrt{2}) /(3 e / \sqrt{2})=2 \sqrt{3} / 3
$$

A similar extremal is obtained for each of the regular polyhedra, and for each of the regular polygons. Of course, the ratio of the two sums depends upon the figure considered.

Also solved by the proposer. One incorrect solution was received.

Comment on Proposal 743:
Mathematics Magazine, 44, (1971), 44.

Comment on Problem 743

743. [November, 1969, and May, 1970] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let P be an interior point of a regular tetrahedron, $T \equiv A_{1} A_{2} A_{3} A_{4}$, with $p_{i}=P A_{i}$, and let $x_{i j}$ denote the distance of P from the edge $A_{i} A_{j}$. Then prove

$$
\sum_{i=1}^{4} p_{i} \geqq 2 \sqrt{3} / 3 \sum_{i<j} x_{i j},
$$

equality holding if and only if P is at the center O of T.
Comment by E. F. Schmeichel, College of Wooster, Ohio.
The inequality should read

$$
\sum_{i=1}^{4} p_{i} \geqq \frac{2 \sqrt{2}}{3} \sum_{i<j} x_{i j} .
$$

Apparently a $\sqrt{3}$ was misprinted in place of the $\sqrt{2}$ above. To show that the inequality as printed is false consider a regular tetrahedron of edge length 1. Let P be the midpoint of edge $A_{1} A_{2}$. Then $p_{1}=p_{2}=1 / 2, p_{3}=p_{4}=\sqrt{3} / 2, x_{12}=0$, $x_{13}=x_{14}=x_{23}=x_{24}=\sqrt{3} / 4$ and $x_{34}=\sqrt{2} / 2$.

Thus

$$
\sum_{i} p_{i}=1+\sqrt{3}<2.8 \quad \text { and } \quad \sum_{i<j} x_{i j}=\sqrt{3}+\sqrt{2} / 2
$$

Since $\sqrt{6}>2.4$ we have

$$
\frac{2 \sqrt{3}}{3} \sum_{i<j} x_{i j}=2+\sqrt{6} / 3>2.8
$$

so for the point in question

$$
\sum_{i} p_{i}<\frac{2 \sqrt{ } 3}{3} \sum_{i<j} x_{i j} .
$$

By the continuity of the distances involved, this inequality will be retained for interior points of the tetrahedron sufficiently near P.

Solution to Proposal 756:
Mathematics Magazine, 43, (1970), 283.

Centrally Symmetric Curves

756. [March, 1970] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Determine closed and centrally symmetric curves C, other than circles, such that the product of two perpendicular radius vectors (issued from the center) be a constant.

Solution by Harry W. Hickey, Arlington, Virginia.
Let us consider a generalized form of the problem: "Determine closed and centrally symmetric curves C, other than circles, such that the product of two radius vectors (issued from the center) be a constant, when the angle between the radius vectors is $\pi / N, N$ being any positive even integer." We will call the center O, while the constant product is R^{2}. Construct a circle K of center O and radius R. Now for every point of C inside the circle, there is a point outside it, such that the product of the distances of the two points from O is R^{2}. Hence C crosses K at some point, say A, and crosses again at point B, where $\angle A O B=\pi / N$. Draw an arc from A to B which does not pass through O, nor intersect any line through O more than once-aside from these restrictions, the form of the arc is arbitrary. Let the polar equation of this arc be $\rho=f(\theta)$. The restrictions we have placed on the form of the arc insure that the reciprocal of f is always finite, and that f is single-valued-a multivalued f leads to ambiguities about the length of the radius vector. So far, f is defined for values of θ in a domain of length π / N. We can extend this to other values of θ by writing

$$
f(\theta+\pi / N)=R^{2} / f(\theta) \quad \text { for all } \theta,
$$

and the the curve C is defined! Because f is now periodic, of period $2 \pi / N$, and since N is even, we have $f(\theta+\pi)=f(\theta)$, making C centrally symmetric (drop the symmetry requirement, and N can be odd).

[^1]Solution to Proposal 763:
Mathematics Magazine, 44, (1971), 108.
Quasi Zeta Functions
763. [May, 1970] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Prove:

$$
\left(1+\frac{1}{3^{10}}+\frac{1}{5^{10}}+\cdots\right)=\left(1+\frac{1}{3^{4}}+\frac{1}{5^{4}} \cdots\right)\left(1-\frac{1}{2^{6}}+\frac{1}{3^{6}}-\frac{1}{4^{6}}+\cdots\right) .
$$

Solution by M. G. Greening, University of New South Wales, Australia.

$$
\begin{aligned}
\zeta(s)=\sum_{s=1}^{\infty} n^{-s}, \text { convergent for }|s| & >1 . \\
1+3^{-4}+5^{-4}+\cdots & =\zeta(4)-\frac{1}{2^{4}} \zeta(4)=15 \zeta(4) / 2^{4} \\
1-2^{-6}+3^{-6}-4^{-6}+\cdots & =\zeta(6)-2\left(\frac{1}{2^{6}} \zeta(6)\right)=\left(1-2^{-5}\right) \zeta(6) \\
1+3^{-10}+5^{-10}+\cdots & =\zeta(10)-\frac{1}{2^{10}} \zeta(10)=\left(1-2^{-5}\right) \frac{33}{22} \zeta(10) .
\end{aligned}
$$

As $\zeta(2 n)=2^{2 n-1} B_{n} \pi^{2 n} /(2 n)$! where B_{n} is the nth Bernoulli number, and $B_{2}=$ $1 / 30, B_{3}=1 / 42, B_{5}=5 / 66$, the result follows after simplification.

Also solved by Bernard August, Glassboro State College, New Jersey; Miguel Bamberger, Monterey, California; Walter Blumberg, New Hyde Park, New York; Wray G. Brady, Slippery Rock State College, Pennsylvania; Richard L. Breisch, Pennsylvania State University; Donald R. Childs, Naval Underwater Weapons Research and Engineering Station, Rhode Island; Gerald C. Dodds, HRB-Singer, Inc., State College, Pennsylvania; D. Dummit, San Mateo High School, California; Louise Grinstein, New York, New York; Jeffrey Hoffstein, Bronx High School of Science, New York; Robert F. Jackson, University of Toledo, Ohio; Shiv Kumar, Panjabi University, and Miss Nirmal, Government Girls' High School, Panipat, India (jointly); J. R. Kuttler, Johns Hopkins Applied Physics Laboratory, Maryland; Herbert R. Leifer, Pittsburgh, Pennsylvania; Michael J. Martino, IBM, Poughkeepsie, New York; Kenneth Rosen, University of Michigan; L. E. Schaefer, General Motors Institute, Flint, Michigan; E. F. Schmeichel, College of Wooster, Ohio; E. P. Starke, Plainfield New Jersey; Paul D. Thomas, Naval Research Laboratory, Washington, D.C.; Graham C. Thompson, Binghamton, New York; Michael R. Wise, University of Colorado; Gregory Wulczyn, Bucknell University; K. L. Yocom, University of Wyoming; and the proposer.

Solution to Proposal 775:
Mathematics Magazine, 44, (1971), 230.

Inverse Functions

775. [November, 1970] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.
Prove $\int_{0}^{1} \sqrt[q]{1-x^{p}} d x=\int_{0}^{1} \sqrt[p]{1-x^{q}} d x, \quad$ where $p, q>0$.
I. Solution by J. C. Binz, Bern, Switzerland.

Let more generally f be a decreasing continuous function in $[a, b]$. Then the inverse function g exists in $[f(b), f(a)]$ and is also decreasing and continuous.

Compute

$$
\int_{f(b)}^{f(a)} g(y) d y=\int_{b}^{a} g[f(t)] f^{\prime}(t) d t=\int_{b}^{a} t f^{\prime}(t) d t=a f(a)-b f(b)+\int_{a}^{b} f(t) d t
$$

Hence, if additionally we have $f(a)=b, f(b)=a$, then $\int_{a}^{b} g(t) d t=\int_{a}^{b} f(t) d t$.
The functions $f: x \rightarrow \sqrt[p]{1-x^{q}}$ and $g: x \rightarrow \sqrt[q]{1-x^{p}}$ represent in $[0,1]$ a special case of the preceding situation, which proves the proposition.
II. Solution by Väclav Konečnẏ, Jarvis Christian College, Hawkins, Texas.

$$
\begin{aligned}
\int_{0}^{1} \sqrt[q]{1-x^{p}} d x & =\frac{1}{p} \int_{0}^{1} z^{-1+1 / p}(1-z)^{1 / q} d z \\
& =\frac{1}{p} B(1 / p, 1+1 / q)=\frac{1}{p q} B(1 / p, 1 / q)
\end{aligned}
$$

where $p, q>0$ to get the real value. We used the substitution $x^{p}=z . B$ is the beta function and as $B(x, y)=B(y, x)$ the value of the integral is unchanged if we interchange p and q.

Also solved by Joseph Beer and Bernard August (jointly), Glassboro State College, New Jersey; Walter Blumberg, Flushing High School, New York; Dermott A. Breault, Cyber, Inc., Cambridge, Massachusetts; Robert X. Brennan, Dover, New Jersey; Robert J. Bridgman, Mansfield State College, Pennsylvania; David C. Brooks, Seattle Pacific College, Washington; G. R. Desai, St. Louis University; Robert Desko, Davenport, Iowa; Ellis Detwiler, Adams, New York; Santo M. Diano, Havertown, Pennsylvania; Fred Dodd, University of South Alabama; M. G. Greening, University of New South Wales, Australia; Robert G. Griswold, University of Hawaii, Hilo College; Philip Haverstick, Fort Belvoir, Virginia; Harry W. Hickey, Arlington, Virginia; John E. Homer, Lisle, Illinois; N. J. Kuenzi, Oshkosh, Wisconsin; David E. Mannes, SUNY, Oneonta, New York; Stephen B. Maurer, Phillips Exeter Academy; Edward Moylan, Ford Motor Company, Dearborn, Michigan; Albert J. Patsche, Rock Island Arsenal, Illinois; V. V. Ramana Rao, Andhra University, South India; B. E. Rhoades, Indiana University; Steve M. Rohde, General Motors Research Laboratories, Warren, Michigan; E. F. Schmeichel, College of Wooster, Ohio; Harry Siller, Hofstra University; A. Swyanavayanamuti, Andhra University, Waltair, South India; R. A. Struble, North Carolina State University; Philip Tracy, APO San Francisco; C. S. Venkataraman, Sree Kerala Varma College, Trichur, South India; John R. Ventura, Jr., Naval Underwater Systems Center, Newport, Rhode Island; R. L. Woodriff, Menlo College, Menlo Park, California; Thomas Wray, Department of Energy, Mines and Resources, Ottawa, Canada; Robert L. Young, Cape Cod Community College, Massachusetts; Paul Zwier, Calvin College, Michigan; and the proposer.

Comment on Proposal 775:
Mathematics Magazine, 45, (1972), 293.

Comment on Problem 775

775. [November, 1970, and September, 1971] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Prove $\int_{0}^{1} \sqrt[q]{1-x^{p}} d x=\int_{0}^{1} \sqrt[p]{1-x^{q}} d x$, where $p, q>0$.

Comment by Ralph Leung, Berkeley, California
The problem would become immediate if we rewrite the above equality as

$$
\int_{0}^{1} \sqrt[q]{1-x^{p}} d x=\int_{0}^{1} \sqrt[p]{1-y^{q}} d y
$$

Both sides give the area of the region bounded by the x-axis, the y-axis, and the graph of $x^{p}+y^{q}=1$ in the first quadrant - the l.h.s. by integrating with respect to x, the r.h.s. with respect to y.

Solution to Proposal 806:
Mathematics Magazine, 45, (1972), 171.

Symmetry About a Line

806. [September, 1971] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Let H be the orthocenter of an isosceles triangle $A B C$, and let $A H, B H$, and $C H$ intersect the opposite sides in D, E, and F, respectively. Prove that the incenters of the right triangles $H B D, H D C, H C E, H E A, H A F$, and $H F B$ lie on a conic.

Solution by Vladimir F. Ivanoff, San Carlos, California.
The problem is a special case of the following theorem:
If six points are symmetric about a line, they lie on a conic.
It can be easily proved by the converse of Pascal's theorem, or else by analytical method.

Incidentally, the theorem holds true, if six points are symmetric about a point.
By choosing the point of symmetry as the origin, the six points have coordinates as follows:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right), \quad\left(x_{2}, y_{2}\right), \quad\left(x_{3}, y_{3}\right) \\
& \left(-x_{1},-y_{1}\right),\left(-x_{2},-y_{2}\right),\left(-x_{3},-y_{3},\right)
\end{aligned}
$$

and the equation of the conic is

$$
\left|\begin{array}{cccc}
x^{2} & y^{2} & x y & 1 \\
x_{1}^{2} & y_{1}^{2} & x_{1} y_{1} & 1 \\
x_{2}^{2} & y_{2}^{2} & x_{2} y_{2} & 1 \\
x_{3}^{2} & y_{3}^{2} & x_{3} y_{3} & 1
\end{array}\right|=0
$$

Also solved by Leon Bankoff, Los Angeles, California (three solutions); Ragnar Dybvik, Tingvoll, Norway; Michael Goldberg, Washington, D. C.; M. G. Greening, University of New South Wales, Australia; and the proposer.

Solution to Proposal 839:
Mathematics Magazine, 46, (1973), 169.

Probability of No Change

839. [September, 1972] Proposed by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Given three boxes each containing w white balls and r red balls identical in shape. Take a ball from the first box and put it in the second box, then take a ball from the second box and put it in the third, and finally take a ball from the third box and put it in the first. Find the probability that the boxes have their original contents as to color.

Solution by Thomas Spencer, Trenton State College, New Jersey.
A moment's reflection will show that the only events which will leave the color composition of all three boxes unchanged are the choices white, white, white or red, red, red. Their probabilities by the multiplication rule are:

$$
\left(\frac{w}{w+r}\right)\left(\frac{w+1}{w+r+1}\right)\left(\frac{w+1}{w+r+1}\right)=\frac{w(w+1)^{2}}{(w+r)(w+r+1)^{2}}
$$

and

$$
\left(\frac{r}{w+r}\right)\left(\frac{r+1}{w+r+1}\right)\left(\frac{r+1}{w+r+1}\right)=\frac{r(r+1)^{2}}{(w+r)(w+r+1)^{2}}
$$

respectively. These events are disjoint and thus the required probability is their sum:

$$
\frac{w(w+1)^{2}+r(r+1)^{2}}{(w+r)(w+r+1)^{2}}
$$

Note: In the case of N boxes the solution would be:

$$
\frac{w(w+1)^{N-1}+r(r+1)^{N-1}}{(w+r)(w+r+1)^{N-1}} .
$$

Also solved by Gladwin Bartel, La Junta, Colorado; Melvin Billick, Midland High School, Michigan; J. L. Brown, Jr., Pennsylvania State University; Joseph B. Browne, Oklahoma State University; Daniel L. Calloway, Ashville, North Carolina; Abraham L. Epstein, Hanscom Field, Massachusetts; George Fabian, Park Forest, Illinois; Michael Goldberg, Washington, D. C.; Kathleen Harris, New Hampton, Iowa; Karl Heuer, Moorhead, Minnesota; John M. Howell, Littlerock, California; Vaclav Konecny, Jarvis Christian College, Texas; Lew Kowarski, Morgan State College, Maryland; Michael W. O'Donnell, Carnegie-Mellon University; George Pfeiffer, Old Dominion University, Virginia; Louisa Russo, Michigan Technological University; R. Shantaram, University of Michigan-Flint; and the proposer.

Solution to Proposal 859:
Mathematics Magazine, 47, (1974), 49.

A Non-Unique Cryptarithm

859. [March, 1973] Proposed by B. Suer and H. Demir, Middle East Technical University, Ankara, Turkey.

Solve the cryptarithm THREE + NINE =EIGHT + FOUR.
I. Solution by Harry L. Nelson, Livermore, California.

There are 12 solutions in decimal base. They are:

$$
\begin{aligned}
& \text { THREE }+ \text { NINE }=\text { EIGHT }+ \text { FOUR } \\
& 30122+4542=25703+8961 \\
& 29433+7073=30692+5814 \\
& 40233+5653=36104+9782 \\
& 59766+4346=63295+0817 \\
& 70566+2926=69107+4385 \\
& 69877+5457=74096+1238
\end{aligned}
$$

In each of these one can interchange the values of G and O to obtain another solution yielding 12 in all.

If one were to add the condition that "THREE is a prime" only the pair 69877 $+5457=74096+1238=74296+1038$ would qualify; and if in addition we ask that "FOUR not be divisible by 3 " the solution would be unique (base 10).
II. Solution by John Tabor and John Beidler (jointly), University of Scranton, Pennsylvania.

Solutions to additive cryptarithms are now trivia with the TABOR-AUTOMATIC CRYPTARITHM SOLVER. This program will accept any cryptarithm involving several additions and one equal sign and solve it in any base.

The program was written as a term project in a course on DATA STRUCTURES. The cryptarithm

$$
T H R E E+N I N E=F O U R+E I G H T
$$

proved uninteresting in that it has 10 solutions. The replacements to obtain these solutions are:

E	T	R	N	H	U	F	G	O	F
2	3	1	4	0	6	5	7	9	8
2	3	1	4	0	6	5	9	7	8
3	2	4	7	9	1	0	6	8	5
3	2	4	7	9	1	0	8	6	5
3	4	2	5	0	8	6	1	7	9
3	4	2	5	0	8	6	7	1	9
6	7	5	2	0	8	9	1	3	4
6	7	5	2	0	8	9	3	1	4
7	6	8	5	9	3	4	0	2	1
7	6	8	5	9	3	4	2	0	1

Total CPU time was 20 seconds on an XDS Sigma 5. The program is in FORTRAN.

Also solved by Merrill Barnebey, University of Wisconsin at La Crosse; Harold Biller, Brooklyn, New York; Dorothy Brunet, Sherman Oaks, California; Robert Copus, Rose Hulman Institute of Technology; H. Marlon Hewit, Reedley High School, California; J. A. H. Hunter, Toronto, Canada; Janice A. McGoldrick, Cranston High School, Rhode Island; Sam Newman, Atlantic City, New Jersey; Erwin Schmidt, Washington, D. C.; S. O. Shachter, Philadelphia, Pennsylvania; Mary F. Turner, Glen Allen, Virginia; C. S. Venkataraman, Trichur, India; and the proposers.

Solution to Proposal 916:
Mathematics Magazine, 48, (1975), 296.

Trilinear Coordinates

916. [November, 1974] Proposed by H. Demir, M.E.T.U., Ankara, Turkey.

Let $X Y Z$ be the pedal triangle of a point P with regard to the triangle $A B C$. Then find the trilinear coordinates x, y, z of P such that

$$
Y A+A Z=Z B+B X=X C+C Y
$$

Solution by M. S. Klamkin, University of Waterloo.

By drawing segments from P parallel to $A B$ and $A C$ respectively and terminating on $B C$, it follows that

$$
B X=x \cot B+z \csc B, \quad C X=x \cot C+y \csc C .
$$

The other distances $C Y, A Y, A Z, B Z$ follow by cyclic interchange. From the hypothesis,

$$
(y+z)(\cot A+\csc A)=(z+x)(\cot B+\csc B)=(x+y)(\cot C+\csc C)=\frac{2 s}{3}
$$

where $s=$ semiperimeter. Solving:

$$
\begin{aligned}
& x=\frac{s}{3}\left(\tan \frac{B}{2}+\tan \frac{C}{2}-\tan \frac{A}{2}\right), \\
& y=\frac{s}{3}\left(\tan \frac{A}{2}+\tan \frac{C}{2}-\tan \frac{B}{2}\right),
\end{aligned}
$$

and

$$
z=\frac{s}{3}\left(\tan \frac{A}{2}+\tan \frac{B}{2}-\tan \frac{C}{2}\right) .
$$

Also solved by D. M. Bailey, Gordon Bennett, Alfred Brousseau, Michael Goldberg, J. M. Stark, and the proposer.

Solution to Proposal 963:
Mathematics Magazine, 50, (1977), 53.

Convex Quadrilaterals

January 1976
963. Characterize convex quadrilaterals with sides a, b, c, and d such that

$$
\left|\begin{array}{llll}
a & b & c & d \\
d & a & b & c \\
c & d & a & b \\
b & c & d & a
\end{array}\right|=0
$$

[Hüseyin Demir, Ankara, Turkey.]
Solution: It is easy to show, by adding and subtracting rows and columns, that the given determinant equation is equivalent to

$$
(a+c+b+d)(a+c-b-d)\left[(a-c)^{2}+(b-d)^{2}\right]=0
$$

Since we have a, b, c, and d all positive, then either

$$
a+c=b+d, \quad \text { or } \quad a=c \quad \text { and } \quad b=d .
$$

In the first case the quadrilateral can be circumscribed about a circle: in the second it is a parallelogram. The argument reverses to show that, if the quadrilateral either is a parallelogram or possesses an inscribed circle, then the determinant is zero.

Clayton W. Dodge University of Maine at Orono

[^2]Solution to Proposal 998:
Mathematics Magazine, 51, (1978), 199.

A 120° Triangle

November 1976
998. Characterize all triangles in which the triangle whose vertices are the feet of the internal angle bisectors is a right triangle. [Hüseyin Demir, Middle East Technical University, Ankara, Turkey.]

Solution: Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the feet of the angle bisectors of angles A, B, C, respectively. Then angle $A^{\prime} C^{\prime} B^{\prime}$ is a right angle iff angle $A C B$ is 120 degrees.

Let $a, b, c\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ be the lengths of sides opposite $A, B, C\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$, respectively. Using the law of cosines and the fact that the angle bisector divides the opposite side in the ratio of the adjacent sides it follows that:

$$
\begin{aligned}
& \left(c^{\prime}\right)^{2}=\left(\frac{a b}{a+c}\right)^{2}+\left(\frac{a b}{b+c}\right)^{2}-2\left(\frac{a b}{a+c}\right)\left(\frac{a b}{b+c}\right)\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right) \\
& \left(b^{\prime}\right)^{2}=\left(\frac{a c}{b+c}\right)^{2}+\left(\frac{a c}{a+b}\right)^{2}-2\left(\frac{a c}{b+c}\right)\left(\frac{a c}{a+b}\right)\left(\frac{a^{2}+c^{2}-b^{2}}{2 a c}\right) \\
& \left(a^{\prime}\right)^{2}=\left(\frac{b c}{a+c}\right)^{2}+\left(\frac{b c}{a+b}\right)^{2}-2\left(\frac{b c}{a+c}\right)\left(\frac{b c}{a+b}\right)\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)
\end{aligned}
$$

Angle $A^{\prime} C^{\prime} B^{\prime}$ is a right angle iff $\left(a^{\prime}\right)^{2}+\left(b^{\prime}\right)^{2}-\left(c^{\prime}\right)^{2}=0$. But this equation simplifies (after much algebra) to

$$
\frac{2 a b c^{2}\left(a^{2}+b^{2}-c^{2}+a b\right)}{(a+b)^{2}(a+c)(b+c)}=0
$$

Thus angle $A^{\prime} C^{\prime} B^{\prime}$ is a right angle iff $a^{2}+b^{2}-c^{2}+a b=0$. But the law of cosines yields $a^{2}+b^{2}-c^{2}+$ $a b=0$ iff angle $A C B$ is 120°.

John Oman

University of Wisconsin-Oshkosh
Also solved by Gordon Bennett, Howard Eves, Michael Goldberg, Leonard D. Goldstone, M. G. Greening (Australia), Hubert J. Ludwig, J. M. Stark, Pambuccian Victor (Romania), Robert L. Young, and the proposer.

Solution to Proposal 1197:
Mathematics Magazine, 58, (1985), 240.

Collinear Mid-Altitudes

September 1984
1197. Characterize the triangles of which the midpoints of the altitudes are collinear. [Hüseyin Demir, Middle East Technical University, Ankara, Turkey.]

Solution I: The midpoints of the altitudes of a triangle are collinear if and only if the triangle is right-angled.

Proof. We note first that the altitudes of a triangle all lie inside the triangle if it is acute-angled, while if it has an obtuse angle, two of the altitudes lie outside the triangle.

Let P, Q, and R be the midpoints of the altitudes from the vertices A, B, and C, respectively, of triangle $A B C$. If D, E, and F are the midpoints of the sides $B C, C A$, and $A B$, then P, Q, and R lie, respectively, on $E F, F D$, and $D E$, produced if necessary. By Pasch's axiom applied to the triangle $D E F$, the points P, Q, and R are collinear if and only if two of them coincide with two of D, E, F, in other words lie on the sides of triangle $A B C$. This occurs if and only if triangle $A B C$ is right-angled.

J. H. Webb
University of Cape Town South Africa

Solution II: The altitudes of a triangle are concurrent at the orthocentre. This is the only property of the altitudes that we need make use of; the answer to the problem is just a special case of the following more general result.

Let D, E, F be points on the side-lines (i.e., lines containing the sides) $B C, C A, A B$, respectively, of the triangle $A B C$, such that $A D, B E, C F$ are concurrent at a point P. Then the midpoints of $A D, B E, C F$ are collinear if and only if P coincides with a vertex of triangle $A B C$ or lies on one of its side-lines.

Proof. If P coincides with a vertex, suppose $P=A$ without loss of generality. Then $E=F=A$, and D lies anywhere on the side-line $B C$; the midpoints of $A D, B E, C F$ are collinear on a line parallel to $B C$.

If P is not a vertex, we use oblique coordinate axes $A B$ and $A C$, with suitable units of measurement along the axes so that A, B, C have coordinates $(0,0),(2,0),(0,2)$, respectively. Let P have coordinates (p, q). Then the coordinates of D, E, F are $(2 p /(p+q), 2 q /(p+q))$, $(0,2 q /(2-p)),(2 p /(2-q), 0)$; we require $p+q \neq 0,2-p \neq 0,2-q \neq 0$, since otherwise at least one of D, E, F is undefined (for instance, $A P$ is parallel to $B C$ if $p+q=0$). The coordinates of the three midpoints are $(p /(p+q), q /(p+q)),(1, q /(2-p)),(p /(2-q), 1)$; these midpoints are collinear if and only if

$$
\left|\begin{array}{ccc}
p /(p+q) & q /(p+q) & 1 \\
1 & q /(2-p) & 1 \\
p /(2-q) & 1 & 1
\end{array}\right|=\frac{2 p q(2-p-q)}{(p+q)(2-p)(2-q)}=0 .
$$

This occurs if and only if $p=0$ or $q=0$ or $p+q=2$, i.e., if and only if P lies on a side-line of the triangle (in which case two of the midpoints coincide).

Now the orthocentre of a triangle cannot lie on a side-line of the triangle unless it coincides with a vertex, i.e., unless the triangle is right-angled. Hence the midpoints of the altitudes are collinear if and only if the triangle is right-angled.

J. F. Rigby
University College
Cardiff, Wales

[^3]Solution to Proposal 1206:
Mathematics Magazine, 59, (1986), 46.

Sum of Inradii of a Dissected Triangle

1206. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Let $A B C$ be a triangle with sides a, b, and c and semiperimeter s. Let the side $B C$ be subdivided using the points $B=P_{0}, P_{1}, \ldots, P_{n-1}, P_{n}=C$ in order. If r_{i} is the inradius of triangle

Figure 1
$A P_{i-1} P_{i}$ for $i=1, \ldots, n$, prove that

$$
r_{1}+\cdots+r_{n}<\frac{1}{2} h_{a} \ln \frac{s}{s-a}
$$

where h_{a} is the length of the altitude from vertex A.
Solution by Vania D. Mascioni, student, ETH Zürich, Switzerland.
For $i=1,2, \ldots, n$ let a_{i} be the base $P_{i-1} P_{i}$ and s_{i} the semiperimeter of triangle $A P_{i-1} P_{i}$, and let a_{i}^{\prime} and s_{i}^{\prime} be the corresponding quantities for triangle $A B P_{i}$. We show below that

$$
\begin{equation*}
\frac{s_{i-1}^{\prime}-a_{i-1}^{\prime}}{s_{i-1}^{\prime}} \cdot \frac{s_{i}-a_{i}}{s_{i}}=\frac{s_{i}^{\prime}-a_{i}^{\prime}}{s_{i}^{\prime}} \quad \text { for } 2 \leqq i \leqq n \tag{1}
\end{equation*}
$$

An easy induction yields

$$
\frac{s-a}{s}=\prod_{i=1}^{n} \frac{s_{i}-a_{i}}{s_{i}}
$$

From the arithmetic-geometric mean inequality and the fact that $r_{i} s_{i}=\frac{1}{2} a_{i} h_{a}$ we obtain

$$
\left(\frac{s-a}{s}\right)^{1 / n} \leqq \frac{1}{n} \sum_{i=1}^{n} \frac{s_{i}-a_{i}}{s_{i}}=\frac{1}{n} \sum_{i=1}^{n}\left(1-\frac{a_{i}}{s_{i}}\right)=1-\frac{2}{n h_{a}} \sum_{i=1}^{n} r_{i}
$$

so that

$$
\sum_{i=1}^{n} r_{i} \leqq \frac{n h_{a}}{2}\left(1-\left(\frac{s-a}{s}\right)^{1 / n}\right),
$$

which is stronger than the proposed inequality, which follows if we use $1-1 / x<\ln x$ for $x>1$ with $x:=(s /(s-a))^{1 / n}$.

Proof of (1). To simplify notation, the sides of triangles $A B P_{i-1}$ and $A P_{i-1} P_{i}$ are relabeled as shown in Figure 2. Then (1) becomes

Figure 2. Stewart's theorem.

$$
\frac{u+v-p}{u+v+p} \cdot \frac{v+w-q}{v+w+q}=\frac{u+w-p-q}{u+w+p+q},
$$

and an easy (though boring) algebraic manipulation shows this is equivalent to

$$
\left(v^{2}+p^{2}-u^{2}\right) q+\left(v^{2}+q^{2}-w^{2}\right) p=0 .
$$

Now by the law of cosines, this is equivalent to

$$
2 p q v\left(\cos \angle A P_{i-1} B+\cos \angle A P_{i-1} P_{i}\right)=0,
$$

which is obvious, since $\angle A P_{i-1} B+\angle A P_{i-1} P_{i}=\pi$. Cf. also Stewart's theorem, in Coxeter and Greitzer, Geometry Revisited, p. 6.

Also solved by Jordi Dou (Spain), Václav Konečný \& Ronald Shepler, L. Kuipers (Switzerland), Syrous Marivani, William A. Newcomb, Bjorn Poonen (student), J. M. Stark, Paul J. Zwier, and the proposer.

Most solvers used an estimate like

$$
\sum_{i=1}^{n} r_{i}<\sum_{j=1}^{m} r_{j}^{\prime}=\sum_{j=1}^{m} \frac{h_{a}\left(x_{j}^{\prime}-x_{j-1}^{\prime}\right)}{x_{j}^{\prime}-x_{j-1}^{\prime}+\sqrt{\left(x_{j-1}^{\prime}\right)^{2}+\left(h_{a}\right)^{2}}+\sqrt{\left(x_{j}^{\prime}\right)^{2}+\left(h_{a}\right)^{2}}} \approx \int_{z}^{z+a} \frac{h_{a} d x}{2 \sqrt{x^{2}+h_{a}^{2}}},
$$

where $A=\left(0, h_{a}\right), B=(z, 0), C=(z+a, 0), P_{j}^{\prime}=\left(x_{j}^{\prime}, 0\right),\left[P_{0}^{\prime}, \ldots, P_{m}^{\prime}\right]$ is a strict refinement of the partition $\left[P_{0}, \ldots, P_{n}\right]$ of $B C$ (i.e., each P_{i} is a P_{j}^{\prime}, and $m>n$), and r_{j}^{\prime} is the inradius of triangle $A P_{j-1}^{\prime} P_{j}^{\prime}$.

Solution to Proposal 1211:
Mathematics Magazine, 59, (1986), 113.

Isoptic of an Ellipse

1211. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Find the locus of points under which an ellipse is seen under a constant angle.

Solution by Volkhard Schindler, Berlin, East Germany.

We consider the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ in a rectangular (x, y) coordinate system. It is well known that the tangent to the ellipse at the point $\left(x_{1}, y_{1}\right)$ has equation $x_{1} x / a^{2}+y_{1} y / b^{2}=1$. Since the tangent has x-intercept a^{2} / x_{1} and y-intercept b^{2} / y_{1}, the slope m of the tangent from a point (x, y) outside the ellipse is given by

$$
m=\frac{y}{x-a^{2} / x_{1}}=\frac{y-b^{2} / y_{1}}{x},
$$

so that

$$
\begin{equation*}
\frac{x_{1}}{a}=\frac{m a}{m x-y} \quad \text { and } \quad \frac{y_{1}}{b}=\frac{b}{y-m x} . \tag{1}
\end{equation*}
$$

Since $\left(x_{1}, y_{1}\right)$ lies on the ellipse, we have $[m a /(m x-y)]^{2}+[b /(y-m x)]^{2}=1$, which after simplification becomes

$$
\begin{equation*}
\left(x^{2}-a^{2}\right) m^{2}-2 x y m+\left(y^{2}-b^{2}\right)=0 . \tag{2}
\end{equation*}
$$

If α is the constant angle subtended by the ellipse, then we can number the roots m_{1}, m_{2} of (2) so that $\tan \alpha=\left(m_{1}-m_{2}\right) /\left(1+m_{1} m_{2}\right)$. Hence

$$
\tan ^{2} \alpha=\frac{\left(m_{1}-m_{2}\right)^{2}}{\left(1+m_{1} m_{2}\right)^{2}}=\frac{\left(m_{1}+m_{2}\right)^{2}-4 m_{1} m_{2}}{\left(1+m_{1} m_{2}\right)^{2}},
$$

which remains valid if α is replaced by $180^{\circ}-\alpha$. Since $m_{1}+m_{2}=2 x y /\left(x^{2}-a^{2}\right)$ and $m_{1} m_{2}=$ $\left(y^{2}-b^{2}\right) /\left(x^{2}-a^{2}\right)$, we obtain

$$
\begin{equation*}
\tan ^{2} \alpha=4 \frac{b^{2} x^{2}+a^{2} y^{2}-a^{2} b^{2}}{\left(x^{2}+y^{2}-a^{2}-b^{2}\right)^{2}} \tag{3}
\end{equation*}
$$

In particular, if $\alpha=180^{\circ}$, then (3) reduces to the equation of the original ellipse, as it should. If $\alpha=90^{\circ}$, then (3) reduces to $x^{2}+y^{2}=a^{2}+b^{2}$, which is the equation of a circle of radius $\sqrt{a^{2}+b^{2}}$.

Since equation (3) is not convenient for plotting, we introduce polar coordinates ($x=r \cos \theta$, $y=r \sin \theta$). Then (3) becomes $r^{4}-2 A r^{2}+B=0$, where

$$
\begin{gathered}
A=a^{2}+b^{2}+2\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right) \cot ^{2} \alpha, \\
B=\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2} \cot ^{2} \alpha,
\end{gathered}
$$

from which we obtain

$$
\begin{equation*}
r^{2}=A \pm \sqrt{A^{2}-B} . \tag{4}
\end{equation*}
$$

Since for fixed θ, r^{2} decreases as α increases, we see that the plus sign in (4) is used when
$0^{\circ}<\alpha \leqq 90^{\circ}$, and the minus sign when $90^{\circ} \leqq \alpha<180^{\circ}$. As seen from the figures, the loci are near-ellipses when $90^{\circ}<\alpha<180^{\circ}$, and are nearly ovals of Cassini or lemniscates of Booth when $0^{\circ}<\alpha<90^{\circ}$. Of course, if $a=b$, all loci are circles.

$a / b=2$.

$a / b=4$.

In each figure the values of $\boldsymbol{\alpha}$ for the five curves, starting
from the outermost, are $30^{\circ}, \mathbf{6 0}^{\circ}, \mathbf{9 0}^{\circ}, 120^{\circ}$, and 180°.

Also solved by Michael V. Finn, J. T. Groenman (The Netherlands), L. Kuipers (Switzerland), Vania Mascioni (student, Switzerland), William A. Newcomb, Richard Parris, Stephanie Sloyan, and Robert L. Young. Solved partially by Zachary Franco (student) and the proposer.
M. S. Klamkin (Canada) found the result in R. C. Yates, A Handbook on Curves and their Properties, J. W. Edwards, Ann Arbor, 1947 (reprinted as Curves and their Properties, NCTM, 1974), pp. 138-140, where the terms isoptic and orthoptic are defined. None of the solvers considered the exceptional cases arising when, for example, x, x_{1}, y, y_{1}, or m is zero or m is infinite in (1).

Solution to Proposal 1298:
Mathematics Magazine, 62, (1989), 200.

Circumscribable quadrangle

June 1988
1298. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

A quadrilateral $A B C D$ is circumscribed about a circle, and P, Q, R, S are the points of tangency of sides $A B, B C, C D, D A$ respectively. Let $a=|A B|, b=|B C|$, $c=|C D|, d=|D A|$, and $p=|Q S|, q=|P R|$. Show that

$$
\frac{a c}{p^{2}}=\frac{b d}{q^{2}}
$$

I. Solution by J. M. Stark, Lamar University, Texas.

Denote by r the radius of the circle tangent to the sides of $A B C D$, and let $\alpha, \beta, \gamma, \delta$ be the angles subtended at the center of the circle by the chords $S P, P Q, Q R, R S$ respectively.

We have $a=|A P|+|P B|, \quad b=|B Q|+|Q C|, \quad c=|C R|+|R D|, \quad d=|D S|+|S A|$ and right triangle geometry gives $|A P|=|S A|=r \tan (\alpha / 2),|B Q|=|P B|=r \tan (\beta / 2)$, $|C R|=|Q C|=r \tan (\gamma / 2),|R D|=|D S|=r \tan (\delta / 2)$. It follows that

$$
a c=r^{2}(\tan (\alpha / 2)+\tan (\beta / 2))(\tan (\gamma / 2)+\tan (\delta / 2)),
$$

and

$$
\begin{equation*}
b d=r^{2}(\tan (\beta / 2)+\tan (\gamma / 2))(\tan (\delta / 2)+\tan (\alpha / 2)) \tag{1}
\end{equation*}
$$

Application of the identity $\tan (x)+\tan (y)=(\sin (x+y)) /(\cos (x) \cos (y))$ to (1) gives

$$
\begin{equation*}
\frac{a c}{b d}=\frac{\sin ((\alpha+\beta) / 2) \sin ((\gamma+\delta) / 2)}{\sin ((\beta+\gamma) / 2) \sin ((\alpha+\delta) / 2)} \tag{2}
\end{equation*}
$$

From $\alpha+\beta+\gamma+\delta=2 \pi$ we obtain $\sin ((\gamma+\delta) / 2)=\sin ((\alpha+\beta) / 2)$ and $\sin ((\alpha+\delta) / 2)=\sin ((\beta+\gamma) / 2)$, which, when combined with (2) yields

$$
\begin{equation*}
\frac{a c}{b d}=\frac{\sin ^{2}((\alpha+\beta) / 2)}{\sin ^{2}((\beta+\gamma) / 2)} \tag{3}
\end{equation*}
$$

Since $p^{2}=(2 r \sin ((\alpha+\beta) / 2))^{2}$ and $q^{2}=(2 r \sin ((\beta+\delta) / 2))^{2}$, it follows from (3) that $a c / b d=p^{2} / q^{2}$.

II. Solution by O. Nouhaud, Faculté des Sciences de Limoges, France.

Let $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be the inverses of A, B, C, D respectively under the inversion about the inscribed circle with center O and radius r. We know that

$$
\left|A^{\prime} B^{\prime}\right|=r^{2} \frac{|A B|}{|O A||O B|}
$$

(e.g., see A Survey of Geometry, Howard Eves, Allyn and Bacon, Boston, 1963, Theorem 3.4.20, p. 153). A circular permutation gives three similar relations. Moreover, $2\left|A^{\prime} B^{\prime}\right|=|S Q|$ because A^{\prime} bisects $S P$ and B^{\prime} bisects $P Q$. Similarly, $2\left|C^{\prime} D^{\prime}\right|=|S Q|$ and $2\left|A^{\prime} D^{\prime}\right|=2\left|B^{\prime} C^{\prime}\right|=|R P|$. The desired result follows from these relations.

Also solved by Mangho Ahuja, Wadie A. Bassali (Kuwait), J.-M. Becker (France), Bilkent University Problem Solving Group (Turkey), J. C. Binz (Switzerland), Duane M. Broline, Brown University Fly-Fishing Club, Onn Chan (student), Gang Chang (student), Chico Problem Group, Timothy Chow, Ragnar Dybvik (Norway), E. C. Friedman, Francis M. Henderson, J. Heuver (Canada), Geoffrey A. Kandall, Hans Kappus (Switzerland), Václav Konec̆ný, L. Kuipers (Switzerland), Helen M. Marston, Richard E. Pfiefer, James S. Robertson, Harry D. Ruderman, Raul A. Simon (Chile), László Szücs, R. S. Tiberio, George Vakanas (student), and the proposer.

Solution to Proposal 1305:
Mathematics Magazine, 62, (1989), 278.

Inradii Identity

October 1988
1305. Proposed by H. Demir and C. Tezer, Middle East Technical University, Ankara, Turkey.

Let $P_{0}=B, P_{1}, P_{2}, \ldots, P_{n}=C$ be points, taken in that order, on the side $B C$ of the triangle $A B C$. If r, r_{i}, and h denote, respectively, the inradii of the triangles $A B C$, $A P_{i-1} P_{i}$, and the common altitude, prove that

$$
\prod_{i=1}^{n}\left(1-\frac{2 r_{i}}{h}\right)=1-\frac{2 r}{h}
$$

Solution by Jim Francis, University of Washington, Seattle, Washington.
It suffices to prove the case where $n=2$, since the formula then follows by induction.

From Euclidean geometry, we know that the inradius of any triangle is the quotient of its area by its semiperimeter. Hence, if we let $x_{1}=B P_{1}, x_{2}=P_{1} C, a_{1}=A B, a_{2}=$ $A P_{1}$, and $a_{3}=A C$, then

$$
\begin{aligned}
& r_{1}=\frac{\frac{1}{2} x_{1} h}{\frac{1}{2}\left(x_{1}+a_{1}+a_{2}\right)}=\frac{x_{1} h}{x_{1}+a_{1}+a_{2}} \\
& r_{2}=\frac{x_{2} h}{x_{2}+a_{2}+a_{3}},
\end{aligned}
$$

and

$$
r=\frac{\left(x_{1}+x_{2}\right) h}{x_{1}+x_{2}+a_{1}+a_{3}} .
$$

This implies that

$$
\begin{aligned}
\left(1-\frac{2 r_{1}}{h}\right)\left(1-\frac{2 r_{2}}{h}\right) & =\left(1-\frac{2 x_{1} h}{h\left(x_{1}+a_{1}+a_{2}\right)}\right)\left(1-\frac{2 x_{2} h}{h\left(x_{2}+a_{2}+a_{3}\right)}\right) \\
& =\frac{\left(a_{1}+a_{2}-x_{1}\right)\left(a_{2}+a_{3}-x_{2}\right)}{\left(a_{1}+a_{2}+x_{1}\right)\left(a_{2}+a_{3}+x_{2}\right)} .
\end{aligned}
$$

Similarly we have

$$
\left(1-\frac{2 r}{h}\right)=\frac{a_{1}+a_{3}-x_{1}-x_{2}}{a_{1}+a_{3}+x_{1}+x_{2}} .
$$

It remains to show that the right-hand sides of the above two equations are equal, or equivalently, to show that

$$
\begin{aligned}
\left(a_{1}\right. & \left.+a_{2}+x_{1}\right)\left(a_{2}+a_{3}+x_{2}\right)\left(a_{1}+a_{3}-x_{1}-x_{2}\right) \\
& =\left(a_{1}+a_{2}-x_{1}\right)\left(a_{2}+a_{3}-x_{2}\right)\left(a_{1}+a_{3}+x_{1}+x_{2}\right) .
\end{aligned}
$$

Expanding and eliminating that which is common to each side, the right side reduces to

$$
\left(-a_{1}^{2}+a_{2}^{2}+x_{1}^{2}\right) x_{2}+\left(-a_{3}^{2}+a_{2}^{2}+x_{2}^{2}\right) x_{1}
$$

while the left side reduces to the additive inverse of this expression. Thus it remains to show that the above expression is zero. This follows from the law of cosines as follows.

Let $\alpha=\angle A P_{1} B$. Then

$$
-a_{1}^{2}+a_{2}^{2}+x_{1}^{2}=2 a_{2} x_{1} \cos \alpha
$$

while

$$
-a_{3}^{2}+a_{2}^{2}+x_{2}^{2}=2 a_{2} x_{2} \cos (\pi-\alpha)=-2 a_{2} x_{2} \cos \alpha
$$

and the proof is complete.
Also solved by S. Belbas, Francisco Bellot-Rosado (Spain), Anna Boettcher and Václav Konečný, Duane M. Broline, Michael V. Finn, John F. Goehl, Jr., Francis M. Henderson, J. Heuver (Canada), Hans Kappus (Switzerland), L. Kuipers (Switzerland), Lamar University Problem Solving Group, J. C. Linders (The Netherlands), Vania Mascioni (Switzerland), The Oxford Running Club, Werner Raffke (West Germany), John P. Robertson, Hyman Rosen, Volkhard Schindler (East Germany), Michael Vowe (Switzerland), A. Zulauf (New Zealand), and the proposer.

Solution to Proposal 1327:
Mathematics Magazine, 63, (1990), 275.

Diagonals of Exscribed Quadrangles

1327. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Let the sides $P Q, Q R, R S, S P$ of a convex quadrangle $P Q R S$ touch an inscribed circle at A, B, C, D and let the midpoints of the sides $A B, B C, C D, D A$ be E, F, G, H. Show that the angle between the diagonals $P R, Q S$ is equal to the angle between the bimedians EG, FH.

I. Solution by Jordi Dou, Barcelona, Spain.

Let the inscribed circle have radius r and center O. Let J, K, L, M be the intersection points of the circle with the lines $O H P, O E Q, O F R, O G S$ respectively.

Let $N=J L \cap K M, T=P R \cap Q S, I=E G \cap F H$. Note that $J L$ and $K M$ are perpendicular [because the arcs JAK and LCM together comprise half the perimeter of the circle], so [since $\triangle J O L$ is isosceles] $K M$ is parallel to the angle bisector of $\angle J O L$. Also, note that the lines $P R, H F$ are antiparallel with respect to the sides of $\angle J O L$ [that is, $\angle O H F=\angle O R P$ and $\angle O F H=\angle O P R$], because $O H \cdot O P=O F \cdot O R=r^{2}$, and so $\triangle O H F, \triangle O R P$ are similar, [since $O H / O F=O R / O P$]. This [together with the fact that $\triangle J O L$ is isosceles] implies that the lines $P R, H F$ form equal angles (say α) with $J L$. Similarly, the lines $Q S, E G$ form equal angles (say β) with $K M$. We then have $\angle G I F=90^{\circ}-(\alpha+\beta)$ while $\angle R T S=90^{\circ}+(\alpha+\beta)$, and we are done.

II. Solution by Jiro Fukuta, Motosu-gun, Gifu-ken, Japan.

Let O be the center of the inscribed circle of the quadrangle $P Q R S$ and r be the length of the radius. Let P, Q, R, S be denoted by the complex numbers $\alpha, \beta, \gamma, \delta$, respectively, on the complex plane with the origin at O. Then E, F, G, H correspond to $r^{2} / \bar{\beta}, r^{2} / \bar{\gamma}, r^{2} / \bar{\delta}, r^{2} / \bar{\alpha}$, respectively.

To obtain the conclusion, it is sufficient to prove that

$$
F \equiv\left(\frac{\alpha-\gamma}{\beta-\delta}\right) \div\left(\frac{r^{2} / \bar{\beta}-r^{2} / \bar{\delta}}{r^{2} / \bar{\alpha}-r^{2} / \bar{\gamma}}\right)
$$

is real. We have

$$
\begin{aligned}
F & =\frac{\alpha-\gamma}{\beta-\delta} \cdot \frac{\frac{r^{2} \bar{\gamma}-r^{2} \bar{\alpha}}{\bar{\alpha} \bar{\gamma}}}{\frac{r^{2} \bar{\delta}-r^{2} \bar{\beta}}{\bar{\beta} \bar{\delta}}} \\
& =\frac{\alpha-\gamma}{\beta-\delta} \cdot \frac{\bar{\alpha}-\bar{\gamma}}{\bar{\beta}-\bar{\delta}} \cdot \frac{\overline{\beta \delta}}{\overline{\alpha \gamma}} \\
& =\frac{|\alpha-\gamma|^{2}}{|\beta-\delta|^{2}}\left(\frac{\delta}{\alpha} \cdot \frac{\beta}{\gamma}\right) .
\end{aligned}
$$

But $(\delta / \alpha)(\beta / \gamma)$ is real, because $\arg (\delta / \alpha)+\arg (\beta / \gamma)=\arg P O S+\arg R O Q=\pi$. This completes the proof.

Also solved by Duane M. Broline, Timothy V. Craine, John F. Goehl, Jr., Francis M. Henderson, Paul Martin, and the proposer.

Solution to Proposal 1356:
Mathematics Magazine, 64, (1991), 278.
Collinearity and symmetry
October 1990
1356. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Let P, Q be points taken on the side $B C$ of a triangle $A B C$, in the order B, P, Q, C. Let the circumcircles of $P A B, Q A C$ intersect at $M(\neq A)$ and those of $P A C, Q A B$ at N. Show that A, M, N are collinear if and only if P and Q are symmetric in the midpoint A^{\prime} of $B C$.

Solution by Christos Athanasiadis, student, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Let K and L be the points of intersection of the line $B C$ with the lines $A M$ and $A N$ respectively. Suppose that the line $B C$ is the x-axis of a coordinate system with origin B, and let a, p, q, k, and l denote the x-coordinates of C, P, Q, K, and L respectively. The point K is on the radical axis of the circumcircles of $P A B$ and $Q A C$, hence its powers $k(k-p)$ and $(k-q)(k-a)$ with respect to these two circles are equal. It follows that $k=a q /(a+q-p)$. Similarly we have $l=a p /(a+p-q)$, interchanging the roles of p and q. We easily find that $l=k$ if and only if $p+q=a$ and the result follows.

[^4]Solution to Proposal 1371:
Mathematics Magazine, 65, (1992), 133.

A Triangle Invariant

1371. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Let A, B, and C be vertices of a triangle and let D, E, and F be points on the sides of $B C, A C$, and $A B$, respectively. Let U, X, V, Y, W, Z be the midpoints of, respectively, $B D, D C, C E, E A, A F, F B$. Prove that

$$
\operatorname{Area}(\triangle U V W)+\operatorname{Area}(\triangle X Y Z)-\frac{1}{2} \operatorname{Area}(\triangle D E F)
$$

is a constant independent of D, E, and F.
I. Solution by Jordi Dou, Barcelona, Spain; submitted on the occasion of his 80 th birthday.

First, let D^{\prime} be any point between C and D and take U^{\prime}, X^{\prime} to be the midpoints of $B D^{\prime}, D^{\prime} C$. Then $X X^{\prime}=U U^{\prime}=\frac{1}{2} D D^{\prime}$.

Let $h_{F}, h_{A}, h_{W}, \ldots$ denote the distances from F, A, W, \ldots to $B C$ respectively. Clearly $h_{Z}=\frac{1}{2} h_{F}$, and $h_{W}=\frac{1}{2}\left(h_{F}+h_{A}\right)$, and therefore by addition, $h_{Z}+h_{W}-h_{F}=$ $\frac{1}{2} h_{A}=h_{Y}+h_{V}-h_{E}$. We let $[P Q R]$ denote the area of triangle $P Q R$, and set $S=[A B C], \sigma=[D E F], \sigma_{1}=[X Y Z], \sigma_{2}=[U V W], \sigma^{\prime}=\left[D^{\prime} E F\right], \sigma_{1}^{\prime}=\left[X^{\prime} Y Z\right]$, and $\sigma_{2}^{\prime}=\left[U^{\prime} V W\right]$.

Using these identities, we find that

$$
\begin{gathered}
\sigma^{\prime}-\sigma=\frac{1}{2} D D^{\prime}\left(h_{E}-h_{F}\right), \\
\sigma_{1}^{\prime}-\sigma_{1}=\frac{1}{2} X X^{\prime}\left(h_{Y}-h_{Z}\right)=\frac{1}{4} D D^{\prime}\left(h_{Y}-h_{Z}\right)
\end{gathered}
$$

and

$$
\sigma_{2}^{\prime}-\sigma_{2}=\frac{1}{4} D D^{\prime}\left(h_{V}-h_{W}\right) .
$$

It follows that

$$
\begin{aligned}
\left(\sigma_{1}^{\prime}+\sigma_{2}^{\prime}-\frac{1}{2} \sigma^{\prime}\right)-\left(\sigma_{1}+\sigma_{2}-\frac{1}{2} \sigma\right) & =\frac{1}{4} D D^{\prime}\left(h_{Y}-h_{Z}+h_{V}-h_{W}-h_{E}+h_{F}\right) \\
& =\frac{1}{4} D D^{\prime}\left(\left(h_{Y}+h_{V}-h_{E}\right)-\left(h_{Z}+h_{W}-h_{F}\right)\right) \\
& =\frac{1}{4} D D^{\prime}\left(\frac{1}{2} h_{A}-\frac{1}{2} h_{A}\right) \\
& =0 .
\end{aligned}
$$

By symmetry, it is clear that the preceding is also 0 when D^{\prime} is between B and D.
In exactly the same way, taking F^{\prime} on $A B$ instead of F and triangle $D^{\prime} E F^{\prime}$ for $D^{\prime} E F$, and after this, taking E^{\prime} on $A C$ instead of E and triangle $D^{\prime} E^{\prime} F^{\prime}$ for $D^{\prime} E F^{\prime}$, we find that $\sigma_{1}+\sigma_{2}-\frac{1}{2} \sigma$ is invariant with respect to $D E F$.

We obtain the value of $\sigma_{1}+\sigma_{2}-\frac{1}{2} \sigma$ by putting $E=A, F=B, D=C$. Then $X=C, Y=A, Z=B, U$ is the midpoint of $B C, V$ is the midpoint of $C A, W$ is the midpoint of $A B$. Also, $\sigma=S, \sigma_{1}=S, \sigma_{2}=(1 / 4) S$, and therefore, $\sigma_{1}+\sigma_{2}-\frac{1}{2} \sigma=\frac{3}{4} S$.
II. Solution by László Szücs, Fort Lewis College, Durango, Colorado.

We shall use the notation $[A B C]=\operatorname{Area}(\triangle A B C)$. The given expression can be written as

$$
\begin{aligned}
& ([A B C]-([A W V]+[B U W]+[C V U])) \\
& \quad+([A B C]-([A Z Y]+[B X Z]+[C Y X])) \\
& \quad-(1 / 2)([A B C]-([A F E]+[B D F]+[C E D])) .
\end{aligned}
$$

Using the relations $[A F E]=4[A W Y],[B D F]=4[B U Z]$, and $[C E D]=4[C V X]$, the expression becomes

$$
\begin{aligned}
\frac{3}{2}[A B C]- & ([A W V]-[A W Y]+[A Z Y]-[A W Y] \\
& +[B U W]-[B U Z]+[B X Z]-[B U Z] \\
& +[C V U]-[C V X]+[C Y X]-[C V X])
\end{aligned}
$$

We now use the relation $[A W V]-[A W Y]=[V Y W]=\frac{1}{4}[C A F]$ and its five analogues to obtain

$$
\frac{3}{2}[A B C]-\frac{1}{4}([C A F]+[E A B]+[A B D]+[F B C]+[B C E]+[D C A])
$$

which is easily seen to equal

$$
\frac{3}{2}[A B C]-\frac{3}{4}[A B C]=\frac{3}{4}[A B C] .
$$

Also solved by Larry E. Askins, Eynshteyn Averbukh, Seung-Jin Bang (Korea), Karen Benbury, Francisco Bellot Rosado (Spain), Scott D. Cohen (student), C. Patrick Collier, Miquel Amengual Covas (Spain), Jordi Dou (Spain), Ragnar Dybvik (Norway), Kao H. and Irene C. Sze, Milton P. Eisner, Jiro Fukuta (Japan), Thomas E. Gantner, John F. Goehl, Jr, Cornelius Groenewoud, H. Guggenheimer, Francis M. Henderson, Ralph P. Grimaldi, Russell Jay Hendel, Paül Irwin, Geoffrey A. Kandall, Vaćlav Konečný, Philip Lau, Eugene Lee, Peter W. Lindstrom, James Pfaendtner, Richard E. Pfiefer, Rolf Rosenkranz (Germany), Ioan Sadoveanu, Jyotirmoy Sarkar, Volkhard Schindler (Germany), Mohammad Parvez Shaikh (student), Ching-Kuang Shene, John S. Sumner, Jordan Tabov (Bulgaria), Michael Vowe, and the proposer.

Tabov proved the more general result. Consider a triangle $A_{1} A_{2} A_{3}$, a real number α different from 0 and 1 , and real numbers λ and μ. For arbitrary points X_{1}, X_{2}, and X_{3} respectively on the lines $A_{2} A_{3}$, $A_{3} A_{1}$, and $A_{1} A_{2}$, define points $C_{i j},(i, j=1,2,3 ; i \neq j)$ by $\overrightarrow{O C_{i j}}=\alpha \overrightarrow{O A_{i}}+\beta \overrightarrow{O X_{j}}$, where O is any point outside the plane of the triangle $A_{1} A_{2} A_{3}$ and $\beta=1-\alpha$. Let $F\left(X_{1}, X_{2}, X_{3}\right)=\lambda\left[C_{23} C_{31} C_{12}\right]+$ $\mu\left[C_{13} C_{21} C_{32}\right]-\left[X_{1} X_{2} X_{3}\right]$, where the square brackets denote signed area, and X_{1}, X_{2}, and X_{3} describe independently respectively the lines $A_{2} A_{3}, A_{3} A_{1}$ and $A_{1} A_{2}$. Then the function $F\left(X_{1}, X_{2}, X_{3}\right)$ is constant if and only if $\lambda=\mu=\frac{1}{2}(1-\alpha)^{-2}$. (The given problem corresponds to the case $\alpha=1 / 2$.)

Solution to Proposal 1377:
Mathematics Magazine, 65, (1992), 199.

A triangle invariant

June 1991
1377. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Let $D E F$ be a variable triangle inscribed in triangle $A B C$, and let U, X, V, Y, W, Z be the midpoints of the line segments $B D, D C, C E, E A, A F$, and $F B$, respectively. Show that the expression

$$
|U V W|+|X Y Z|-\frac{1}{2}|D E F|
$$

for areas is constant.
Solution by Hans Kappus, Mathematisches Institut der Universität, Basel, Switzerland.
Denote the expression in question by S. We show that $S=(3 / 4)$ Area $A B C$.
Since S /Area $A B C$ remains unchanged under affine transformations we may choose the affine coordinate system so that $A=(0,0), B=(1,0)$, and $C=(0,1)$. Now let

$$
D=(1-r, r), \quad E=(0, s), \quad F=(t, 0) ; \quad 0 \leq r, s, t, \leq 1 .
$$

Then we have

$$
\begin{gathered}
U=(1-r / 2, r / 2), \quad V=(0,(1+s) / 2), \quad W=(t / 2,0), \\
X=((1-r) / 2,(1+r) / 2), \quad Y=(0, s / 2), \quad Z=((1+t) / 2,0) .
\end{gathered}
$$

Using these coordinates the following areas may be calculated in a straightforward manner:

$$
\begin{aligned}
\text { Area } U V W & =\frac{1}{8}(2-r+2 s-t-r s+r t-s t) \\
\text { Area } X Y Z & =\frac{1}{8}(1+r+t-r s+r t-s t) \\
\text { Area } D E F & =\frac{1}{2}(s-r s+r t-s t)
\end{aligned}
$$

From this it follows that $S=3 / 8=(3 / 4)$ Area $A B C$.
Also solved by Beno Arbel (Israel), H. Guggenheimer, Francis M. Henderson, John G. Heuver (Canada), Thomas Jager, Václav Konečny, Helen M. Marston, Ralph Merrill, José Heber Nieto (Venezuela), Chrysostom G. Petalas (Greece), F. C. Rembis, Robert L. Young, Paul J. Zwier, an unsigned solution, and the proposer.

Several people mentioned that the problem is incorrect as stated. The intention in the problem was that D, E, F should be on line segments $B C, C A$, and $A B$ respectively. A corrected version of this problem appears as 1371 in April 1991, and several solutions are given in the April 1992 issue. Somehow the uncorrected version did not get lifted from the file of accepted proposals, so it inadvertently reappeared. Apologies.

Solution to Proposal 1405:
Mathematics Magazine, 66, (1993), 269.
Isogonally related circles
October 1992
1405. Proposed by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.

Two circles inscribed in distinct angles of a triangle are isogonally related if the tangents from the third vertex not coinciding with the sides are symmetric with respect to the bisector of the third angle. Given three circles inscribed in distinct angles of a triangle, prove that if any two of the three pairs of circles are isogonally related then so is the third pair.

Solution by the proposer.
Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ be circles inscribed in angles $B A C, C B A, A C B$, respectively, of the given triangle $A B C$. Let I_{i}, r_{i} be the center and the radius of $\Gamma_{i}, i=1,2,3$. Let E and F denote the points on side $A B, E, F \notin\{A, B\}$, such that $C E$ and $C F$ are tangent to Γ_{1} and Γ_{2}, respectively. Let $\gamma=\angle A C E$ and $\mu=\angle F C B$. As usual, let a, b, c denote the lengths of the sides $B C, C A, A B$, respectively.

By considering triangles $A I_{1} C$ and $I_{2} B C$, respectively, we have

$$
\begin{aligned}
& b=\left(\cot \frac{A}{2}+\cot \frac{\gamma}{2}\right) r_{1} \\
& a=\left(\cot \frac{B}{2}+\cot \frac{\mu}{2}\right) r_{2} .
\end{aligned}
$$

Now Γ_{1} and Γ_{2} are isogonally related if, and only if, $\gamma=\mu$, and, using the previous equations, this is the case if and only if

$$
\frac{b}{r_{1}}-\cot \frac{A}{2}=\frac{a}{r_{2}}-\cot \frac{B}{2},
$$

or equivalently,

$$
\frac{b}{r_{1}}-\frac{s-a}{r}=\frac{a}{r_{2}}-\frac{s-b}{r}
$$

where $2 s=a+b+c$ and r is the inradius of triangle $A B C$. This can be regrouped into the form

$$
\begin{equation*}
\frac{a}{\left(1 / r_{1}-1 / r\right)}=\frac{b}{\left(1 / r_{2}-1 / r\right)} . \tag{1}
\end{equation*}
$$

Similarly, Γ_{2} and Γ_{3} are isogonally related if, and only if,

$$
\begin{equation*}
\frac{b}{\left(1 / r_{2}-1 / r\right)}=\frac{c}{\left(1 / r_{3}-1 / r\right)} . \tag{2}
\end{equation*}
$$

Combining (1) and (2), we obtain

$$
\frac{a}{\left(1 / r_{1}-1 / r\right)}=\frac{c}{\left(1 / r_{3}-1 / r\right)},
$$

which happens if, and only if, Γ_{1} and Γ_{3} are isogonally related.
Also solved by Richard Holzsager, Jiro Fukuta (Japan), and Francisco Bellot Rosado and María Ascensión López (Spain).

List of Quicky problems composed by Hüseyin Demir
[1] Quicky 117, Mathematics Magazine, 28, (1954-1955), 37.
[2] Quicky 138, Mathematics Magazine, 28, (1954-1955), 241.
[3] Quicky 141, Mathematics Magazine, 28, (1954-1955), 292.
[4] Quicky 166, Mathematics Magazine, 29, (1955-1956), 29.
[5] Quicky 188, Mathematics Magazine, 30, (1956-1957), 172.
[6] Quicky 227, Mathematics Magazine, 32, (1958-1959), 32.
[7] Quicky 234, Mathematics Magazine, 32, (1958-1959), 113.
[8] Quicky 242, Mathematics Magazine, 32, (1958-1959), 229.
[9] Quicky 266, Mathematics Magazine, 33, (1959-1960), 302.
[10] Quicky 281, Mathematics Magazine, 34, (1961), 303.
[11] Quicky 284, Mathematics Magazine, 34, (1961), 303.
[12] Quicky 341, Mathematics Magazine, 37, (1964), 251.
[13] Quicky 343, Mathematics Magazine, 37, (1964), 251.
[14] Quicky 710, Mathematics Magazine, 59, (1986), 112.

Quicky 117, Mathematics Magazine, 28, (1954-1955), 37.
Q 11 How many squares are there on a chessboard? [Submitted by Huseyin Demir]

Quicky 138, Mathematics Magazine, 28, (1954-1955), 241.
Q 138. Find the sum $S_{m}=1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!$ [Submitted by Huseyin Demir].

Quicky 141, Mathematics Magazine, 28, (1954-1955), 292.
Q 141. If the twelve months of the year are written in the order offered by $5 n+2(\bmod 12), n=1,2,3, \ldots 12$, what can be said about the characteristics of the first seven, the next four, and of the last month? [Submitted by Huseyin Demir.]

Quicky 166, Mathematics Magazine, 29, (1955-1956), 29.
Q 166. Can the sum of the cubes of the first m consecutive integers

Quicky 188, Mathematics Magazine, 30, (1956-1957), 172.
Q 188. At what times must the hands of a clock be interchanged in order to obtain new correct time? [Submitted by Huseyin Demir].

Quicky 227, Mathematics Magazine, 32, (1958-1959), 32.
Q 227. Find a function $f(n)$ such that $f(1), f(2), f(3), \ldots ; f(13), f(14)$ be

Quicky 234, Mathematics Magazine, 32, (1958-1959), 113.
Q 234. If the sum of the coefficients of $A(x) B(x)$ is zero, the sum of the coefficients of one of the polynomials is necessarily zero. [Submitted by Huseyin Demir]

Quicky 242, Mathematics Magazine, 32, (1958-1959), 229.
Q242. Find an $f(n)$ such that $f($ even $)=1 / 2$ and $f($ odd $)=1[$ Submitted by Huseyin Demir]

Quicky 266, Mathematics Magazine, 33, (1959-1960), 302.
Q 266. If p is a prime number greater than 3 , then $p^{2}+2$ is composite. [Submitted by Huseyin Demir]

Quicky 281, Mathematics Magazine, 34, (1961), 303.
Q281. Evaluate the radius of the inner tritangent circle to excircles of a triangle [Submitted by Huseyin Demir].

Quicky 284, Mathematics Magazine, 34, (1961), 303.
Q 284. What is the locus of points whose projections on the sides of a triangle are collinear? [Submitted by Huseyin Demir].

Quicky 341, Mathematics Magazine, 37, (1964), 251.
Q341. Find the limit of the fraction as n approaches infinity:

$$
\frac{\phi(1)+\phi(2)+\phi(3)+\cdots+\phi(n)}{1+2+3+\cdots+n}
$$

where $\phi(n)$ is Euler's totient.
[Submitted by Huseyin Demir.]

Quicky 343, Mathematics Magazine, 37, (1964), 251.
Q343. Identify the angle θ satisfying

$$
\frac{\sin \left(1 \cdot \theta+15^{\circ}\right)}{\sqrt{ } 1}=\frac{\sin \left(2 \cdot \theta+15^{\circ}\right)}{\sqrt{ } 2}=\frac{\sin \left(3 \cdot \theta+15^{\circ}\right)}{\sqrt{ } 3}
$$

[Submitted by Huseyin Demir.]

Quicky 710, Mathematics Magazine, 59, (1986), 112.
Q710. Submitted by Hüseyin Demir, Middle East Technical University, Ankara, Turkey.
If n is any positive integer, show that the number $T=(1 / 8) n(n+1)(n+2)(n+3)$ is a triangular number.

9 Solutions of Quickies

Solution to Quicky 117:
Mathematics Magazine, 28, (1954-1955), 37.
A 117. Not 64 , but $1^{2}+2^{2}+\cdots+8^{2}+\frac{8 \cdot 9 \cdot 17}{6}=204$.

Solution to Quicky 138:
Mathematics Magazine, 28, (1954-1955), 241.

A 138.

$$
\begin{aligned}
S=\sum_{p=1}^{n} p \cdot p! & =\sum_{p=1}^{n}(p+1-1) \cdot p! \\
& =\sum_{p=1}^{n}(p+1)!-\sum_{p=1}^{n} p! \\
& =(n+1)!-1
\end{aligned}
$$

Solution to Quicky 141:
Mathematics Magazine, 28, (1954-1955), 292.
A 141. The first seven months listed will have 31 days, the next four months will have 30 days and the last one has 29 or 28 days.

Solution to Quicky 166:
Mathematics Magazine, 29, (1955-1956), 29.
A 1G6. If $l^{3}+2^{3}+\ldots+m^{3}=(m+1)^{3}+\ldots+(m+n)^{3}$
then $2\left(1^{3}+2^{3}+\ldots+m^{3}\right)=1^{3}+2^{3}+\ldots+(m+n)^{3}$
or $\quad 2[1 / 2 m(n+1)]^{2}=[1 / 2(m+n)(m+n+1)]^{2}$
so $\quad 1 / 2 m(m+1) \sqrt{2}=1 / 2(m+n)(m+n+1)$
But this last eçuation is impossible. Therefore the answer is no.

Mathematics Magazine, 30, (1956-1957), 172.
A 188. Let p denote the number of hours and a the fraction of an hour at the time T. When the hands are interchanged we obtain new time t^{\prime}, the corresponding numbers being p^{\prime}, a^{\prime} (We may suppose $p^{\prime} \geq p$). At t the angle in hours $p^{\prime}+a^{\prime}$ of minute hand is 12 times a :

$$
\begin{array}{lll}
p^{\prime}+a^{\prime}=12, & 0 \leq p^{\prime}<12, & a^{\prime}<1 \\
p+a=12 a^{\prime}, & 0 \leq p<12, & a<1
\end{array}
$$

We have

$$
\begin{aligned}
& a=\left(12 p^{\prime}+p\right) / 143 \\
& a^{\prime}=\left(p^{\prime}+12 p\right) / 143 .
\end{aligned}
$$

Hence, given any two positive integers p, p^{\prime} less than 12 we get a and a^{\prime}, and therefore the required times.

Solution to Quicky 227:
Mathematics Magazine, 32, (1958-1959), 32.

$$
\text { A 227. } f(n)=1-\phi(n)
$$

Solution to Quicky 234:
Mathematics Magazine, 32, (1958-1959), 113.
A 234. For $x=1$ we have $\Sigma a_{i} \cdot \Sigma b_{i}=\Sigma c_{i}$ and the result follows.

Solution to Quicky 242:
Mathematics Magazine, 32, (1958-1959), 229.
A 242. Construct $f(n)$ so that $f(n)=1 / 2(n+1-2[n / 2])$ where $[n / 2]$ is the largest integer in $n / 2$.

Solution to Quicky 266:
Mathematics Magazine, 33, (1959-1960), 302.
A 266. If p is a prime exceeding 3 then we have $p^{2}+2=(6 m \pm 1)^{2}+2 \equiv 0$ $(\bmod 3)$.

Solution to Quicky 281:

Mathematics Magazine, 34, (1961), 303.
A 281. This circle, being the nine-point circle of the triangle, has radius $1 / 2 R$.

Solution to Quicky 284:
Mathematics Magazine, 34, (1961), 303.
A 284. If the points are restricted to lie on the plane of the triangle, the locus is the circumcircle of the triangle. Since no such restriction is made, the locus is the right cylinder having this circumcircle as section.

Solution to Quicky 341:
Mathematics Magazine, 37, (1964), 251.
A341. $\phi(k)$ denotes the number of integers smaller than k and prime to it. Hence,

$$
\sum_{1}^{n} \phi(k)
$$

is the total number of relatively prime pairs among the first n integers, the total number of pairs being $\binom{n}{2}$. The limit of the given fraction being

$$
\sum_{1}^{n} \phi(k) /\binom{n}{2}
$$

it will be the probability that any two integers taken at random be relatively prime. This probability is known to have the value $6 / \pi^{2}$. Hence, the limit of the given fraction is $6 / \pi^{2}$.

Solution to Quicky 343:
Mathematics Magazine, 37, (1964), 251.
A343. The angle θ is evidently 15°.

Solution to Quicky 710:
Mathematics Magazine, 59, (1986), 112.
A710. T is a triangular number if for some positive integer k, one has $(1 / 8) n(n+1)(n+2)$ $(n+3)=(1 / 2) k(k+1)$. By considering parity and noting that $n(n+3)<(n+1)(n+2)$, one is led to try $k=n(n+3) / 2$. Then

$$
k+1=\frac{n(n+3)}{2}+1=\frac{(n+1)(n+2)}{2},
$$

and the result follows.

10 Contributed Solutions to Mathematics Magazine

List of solutions sent to Proposals by Hüseyin Demir
[1] Proposal 192, Mathematics Magazine, 28, (1954-1955), 36.
[2] Proposal 203, Mathematics Magazine, 28, (1954-1955), 163.
[3] Proposal 204, Mathematics Magazine, 28, (1954-1955), 165.
[4] Proposal 221, Mathematics Magazine, 28, (1954-1955), 291.
[5] Proposal 226, Mathematics Magazine, 29, (1955-1956), 488.
[6] Proposal 270, Mathematics Magazine, 30, (1956-1957), 108.
[7] Proposal 272, Mathematics Magazine, 30, (1956-1957), 166.
[8] Proposal 332, Mathematics Magazine, 32, (1958-1959), 52.
[9] Proposal 353, Mathematics Magazine, 32, (1958-1959), 226.
[10] Proposal 374, Mathematics Magazine, 33, (1959-1960), 113.
[11] Proposal 383, Mathematics Magazine, 33, (1959-1960), 228.
[12] Proposal 387, Mathematics Magazine, 33, (1959-1960), 233.
[13] Proposal 400, Mathematics Magazine, 34, (1960-1961), 53.
[14] Proposal 401, Mathematics Magazine, 34, (1960-1961), 55.
[15] Proposal 646, Mathematics Magazine, 40, (1967), 226.
[16] Proposal 653, Mathematics Magazine, 42, (1969), 283.
[17] Proposal 1199, Mathematics Magazine, 58, (1985), 243.
[18] Proposal 1256, Mathematics Magazine, 61, (1988), 54.

Contributed Solution to Proposal 192:
Mathematics Magazine, 28, (1954-1955), 36.
192. [January 1954] Proposed by V. Thebault, Tennie, Sarthe, France.

If $A^{\prime}, B^{\prime}, C^{\prime}$ are the symmetries of the vertices of a triangle $A B C$ with respect to a fixed point, the circumcircles of the three triangles $A B^{\prime} C^{\prime}, B C^{\prime} A^{\prime}, C A^{\prime} B^{\prime}$ have a point in common which lies on the circumcircle of the triangle $A B C$.

Solution by Huseyin Demir, Zonguldak, Turkey. It will suffice to prove that any two of the circumcircles intersect on the circumcircle (0) of $A B C$. Let I be the intersection of the circles $B C^{\prime} A^{\prime}$ and $C A^{\prime} B^{\prime}$. To prove that it belongs to (0) we show that $\angle B I C=\angle B A C=\angle A: \angle B I C=\angle B I A^{\prime}+$ $\angle A^{\prime} I C=\angle B C^{\prime} A^{\prime}+\angle A^{\prime} B^{\prime} C=\angle B^{\prime} C A+\angle K B^{\prime} C=\angle B^{\prime} C K+\angle K B^{\prime} C=\angle A^{\prime} K C=\angle B A C=$ $\angle A$.

The first equality follows from the fact that the points $B, I, C^{\prime}, A^{\prime}$ on
one hand and $B, B^{\prime}, C, A^{\prime}$ on the other lie on the respective circumcircles, and the other equalities from the parallelisms:

$$
B C^{\prime}\left\|C B^{\prime}, A^{\prime} C^{\prime}\right\| A C, A^{\prime} B^{\prime} \| A B .
$$

Also solved by H. E. Fettis, Dayton, Ohio; O. J. Ramler, Catholic University of America and the proposer.

Contributed Solution to Proposal 203:
Mathematics Magazine, 28, (1954-1955), 163.
203. [May 1954] Proposed by Norman Anning, Alhambra, California.

Prove that three of the intersections of $x^{2}-y^{2}+a x+b y=0$ and $x^{2}+y^{2}-a^{2}-b^{2}=0$ trisect the circle through the se three points.
II. Solution by Huseyin Demir, Zonguldak, Turkey. Set $r^{2}=a^{2}+$ b^{2} and let the value of y obtained by adding together the two equations be substituted in the first equation. We get an equation:

$$
4 x^{4}+4 a x^{3}-3 r^{2} x^{2}-2 a r^{2} x+a^{2} r^{2}=0,
$$

of fourth degree in x of which the roots are $x_{1}, x_{2}, x_{3}, x_{4}$.
If the triangle $A_{1} A_{2} A_{3}$ corresponding to x_{1}, x_{2}, x_{3} is equilateral, $x_{1}+x_{2}+x_{3}$ will vanish (for $A_{1} A_{2} A_{3}$ is in the circle $x^{2}+y^{2}-r^{2}=$ 0 centeredat 0), and x_{4} is from the second coefficient $\left(x_{1}+x_{2}+x_{3}\right)$ $+x_{4}=x_{4}=-a$.

Therefore to prove the statement it will suffice to show that the above equation is divisible by $x+a$ and that in the quotient obtained the term x^{2} is missing.

By division we get

$$
4 x^{4}+4 a x^{3}-3 r^{2} x^{2}-2 a r^{2} x+a^{2} r^{2}=(x+a)\left(4 x^{3}-3 r^{2} x+a r^{2}\right)
$$

and this is in agreement with what we said above. Hence $A_{1} A_{2} A_{3}$ is an equilateral triangle.

Contributed Solution to Proposal 204:
Mathematics Magazine, 28, (1954-1955), 165.
204. [May 1954] Proposed by C. W. Trigg, Los Angeles City College.

In the triangle $A B C$ let the feet of the median (m_{a}), of the internal angle bisector (t_{a}), of the cevian (p_{a}) to the contact point of the incircle with a, and of the cevian $\left(q_{a}\right)$ to the contact point of the excircle relative to A with a be respectively A_{m}, A_{t}, A_{p} and A_{q}. Use similar notation for the corresponding lines to b and c.
1). Determine the relationship between the sides of the triangle if the following triads are to be concurrent: p_{a}, m_{b}, t_{c} at S; p_{z}, q_{b}, m_{c} at $R ; m_{a}, p_{b}, t_{c}$ at $T ; q_{a}, p_{b}, m_{c}$ at V.
2). Show that $A_{p} B_{q}$ and $A_{q} B_{p}$ are parallel to $A B ; C_{t} B_{p}$ and $S V$ are parallel to $B C$; and $C_{t} A_{p}$ and $R T$ are parallel to $A C$.

Solution by Huseyin Demir, Zonguldak, Turkey. 1). We determine the positions of the cevians u_{a}, v_{b}, w_{c} or their feet A_{u}, B_{v}, C_{w} on the respective sides $B C, C A, A B$ by the ratios:

$$
k\left(A_{u}\right)=A_{u} B / A_{u} C, \quad k\left(B_{v}\right)=B_{v} C / B_{v} A, \quad k\left(C_{w}\right)=C_{w} A / C_{w} B
$$

Since these points are interior points of the sides all these ratios are negative. Their values are tabulated below:

$$
\begin{aligned}
& k\left(A_{m}\right)=-1, k\left(A_{t}\right)=-c / b, k\left(A_{p}\right)=-(s-b) /(s-c), k\left(A_{q}\right)=-(s-c) /(s-b) \\
& k\left(B_{m}\right)=-1, k\left(B_{t}\right)=-a / c, k\left(B_{p}\right)=-(s-c) /(s-a), k\left(B_{q}\right)=-(s-a) /(s-c) \\
& k\left(C_{m}\right)=-1, k\left(C_{t}\right)=-b / a, k\left(C_{p}\right)=-(s-a) /(s-b), k\left(C_{q}\right)=-(s-b) /(s-a)
\end{aligned}
$$

Now, the required common condition is obtained by applying Ceva's theorem to the triples of cevians:

TRIPLES: POINTS: CEVA THEOREM: CONDITIONS:
$p_{a}, m_{b}, t_{c} S \quad[-(s-b) /(s-c)][-1][-b / a]=-1 \quad(s-b) /(s-c)=a / b$
$p_{a}, q_{b}, m_{c} \quad R \quad[-(s-b) /(s-c)][-(s-a) /(s-c)][-1]=-1(s-a)(s-b)=(s-c)^{2}$
$m_{a}, p_{b}, \quad t_{c} \quad T \quad[-1][-(s-c) /(s-a)][-b / a]=-1 \quad(s-c) /(s-a)=a / b$
$q_{a}, f_{b}, m_{c} \quad V \quad[-(s-c) /(s-b)][-(s-c) /(s-a)][-1]=-1(s-c)^{2}=(s-a)(s-b)$
These four conditions just obtained are easily seen to be identical with the unique condition

$$
c=\left(a^{2}+b^{2}\right) /(a+b) .
$$

2.) (a): To prove $A_{p} B_{q} / / A_{q} B_{p} / / A B$ we see that $k\left(A_{p}\right)=1 / k\left(B_{q}\right)$, $k\left(A_{q}\right)=1 / k\left(b_{p}\right)$.
(b): To prove $C_{t} B_{p} / / B C$ we similarly see $k\left(B_{p}\right)=1 / k\left(C_{t}\right)$ (see cond (3)).
Now to prove $S V / / B C$ we apply the Menelaus theorem to the triangles $B C B_{m}, B C C_{m}$ cut respectively by the lines $A S A_{p}, A V A_{q}$:

$$
\begin{aligned}
& \left(A_{p} B / A_{p} C\right)\left(A C / A B_{m}\right)\left(S B_{m} / S B\right)=1, \quad \text { then } S B / S B_{m}=2 k\left(A_{p}\right) . \\
& \left(A_{q} B / A_{q} C\right)\left(V C / V C_{m}\right)\left(A C_{m} / A B\right)=1, \text { then } V C / V C_{m}=2 / k\left(A_{q}\right) .
\end{aligned}
$$

Hence

$$
S B / S B_{m}=2 k\left(A_{p}\right)=2 / k\left(A_{q}\right)=V C / V C_{m} .
$$

This proves that S, V divide $B B_{m}, C C_{m}$ in the same ratio. But having $B_{m} C_{m} / / B C$ the property follows.
(c): To prove $C_{t} A_{p} / / A C$ we see that $k\left(C_{t}\right)=1 / k\left(A_{p}\right)$.

Then finally to show $R T / / A C$ we again apply the Menelaus theorem to the triangles $C A C_{m}, C A A_{m}$ cut by the lines $B R B_{q}, B T B_{q}$ respectively.

$$
\begin{aligned}
& k\left(B_{q}\right)\left(B A / B C_{m}\right)\left(R C_{m} / R C\right)=1 \text { then } R C / R C_{m}=2 k\left(B_{q}\right), \\
& k\left(B_{p}\right)\left(T A / T A_{m}\right)\left(B A_{m} / B C\right)=1 \text { then } T A / T A_{m}=2 / k\left(B_{p}\right),
\end{aligned}
$$

and

$$
R C / R C_{m}=2 k\left(B_{q}\right)=2 / k^{*}\left(B_{p}\right)=T A / T A_{m} .
$$

Hence R and T divide $C C_{m}, A A_{m}$ in the same ratio. But having $C_{m} A_{m} / / C A$ we also have $R T / / C A$.
Q. F. D.

Also solved by Sister M. Stephanie, Georgian Court College, N. J. and the proposer.

Contributed Solution to Proposal 221:
Mathematics Magazine, 28, (1954-1955), 291.
221. [November 1954] Proposed by E.P.Starke, Rutgers University.

On a conical surface there is traced a spiral which crosses each of the linear elements at a fixed angle ψ. Find a simple expression for the length of this spiral between any two of its points.

Solution by Huseyin Demir, Zonguldak, Turkey.
The cone is a developable surface. When developed the ψ-spiral on the cone is transformed into a ψ-logarithmic spiral on the plane, of which the polar equation is:

Then

$$
d s=\sqrt{d r^{2}+r^{2} d \theta^{2}}=\frac{a}{\sin \psi} e^{(\cot \psi) \theta} d \theta
$$

Between two points on the spiral

$$
s=\frac{a}{\sin \psi} \int_{a}^{b} e^{(\cot \psi) \theta} d \theta=\frac{a}{\cos \psi}\left|e^{(\cot \psi) \theta}\right|_{a}^{b}=\frac{|\mathbf{r}|_{a}^{b}}{\cos \psi}
$$

$s=(b-a) / \cos \psi$ where a and b denote the distances of the points from the vertex of the cone.

Also solved by Walter B. Carver, Cornell University; M. S. Klamkin, Polytechnic Institute of Brooklyn; S. H. Sesskin, Hofstra College, New, York; A.Sisk, Maryville College, Tennessee and the proposer.

Contributed Solution to Proposal 226:
Mathematics Magazine, 29, (1955-1956), 48.
226. [January 1955] Proposed by P. D. Thomas, Eglin Air Force Base, Florida.

Tangents are drawn from a point P to an ellipse. If R and Q are the points of contact and O is the center of the ellipse, find the locus of P if the area of the the quadrilateral $P Q O R$ remains constant.
11. Solution by Huseyin, Demir, Zonguldak, Turkey. The ellipse is an orthogonal projection of a circle. Let $P^{\prime} Q^{\prime} O R^{\prime}$ be the corresponding quadrangle. The locus of P^{\prime} is a concentric circle, for the two quadrangles are in a constant ratio (in area). Hence the locus of P, projection of P^{\prime}, is an ellipse homothetic with the original one.

Also solved by M.. S. Klamkin, Brooklyn Polytechnic Institute; S..H..Sesskin, Hofstra College; E..P..Starke, Rutgers University; Chih-yi Wang, University of Minnesota and the proposer.

Contributed Solution to Proposal 270:
Mathematics Magazine, 30, (1956-1957), 108.

Circles In A Crescent

270. [March 1956] Proposed by Leon Bankoff, Los Anyeles, California.

A maximum circle is inscribed in a crescent formed by a semicircle and a quadrant of a circle. Find a general expression for the radii of consecutively tangent circles touching the sides of the crescent,
the first touching the maximum circle, the second touching the first and so on.

Solution by Huseyin Demir, Kandilli, Bolgesi, Turkey., Let the given circles (0), (0^{\prime}) intersect each other at A and B, and let the center and radius of the nth circle be denoted by $\left(0_{n}\right), r_{n}$ respectively.

We invert the figure with center at $A, k^{2}=A B^{2}=4 R^{2}$ being the power. Under the inversion, (0) is inverted into its tangent line $B H_{0}$, and (0^{\prime}) into the line $B 0^{\prime}$, forming an angle of $2 \alpha=45^{\circ}$. The circles (Ω_{i}), inverse of (0_{i}), from a series of tangent circles inscribed in the above angle. Let $\left(\Omega_{n}\right)$ touch $B H_{0}$ at H_{n}. Then we may easily find that the radius $\rho_{n}=\Omega_{n} H_{n}$ of (Ω_{n}) is given by

$$
\rho_{n}=\left(\frac{1-\sin \alpha}{1+\sin \alpha}\right)^{n} \rho_{0}
$$

where

$$
\rho_{0}=\Omega_{0} H_{0}=B H_{0} \tan \alpha=2 R \tan \alpha
$$

Drawing the common tangent $A T_{n} T_{n}^{\prime}$ to the inverse circles (0_{n}), $\left(\Omega_{n}\right)$ we write

$$
r_{n}=A T_{n} \rho_{n} / A T_{n}^{\prime}=A T_{n} \cdot A T_{n}^{\prime} \rho_{n} / A T_{n}^{\prime 2}=k^{2} \rho_{n} /\left(A \Omega_{n}^{2}-n^{2}\right)
$$

Denoting the projection of Ω_{n} on $A B$ by K_{n} we have

$$
\begin{aligned}
A \Omega_{n}^{2}-\rho_{n}^{2} & =A K_{n}^{2}+K_{n} \Omega_{n}^{2}-\rho_{n}^{2} \\
& =\left(2 R+\rho_{n}\right)^{2}+B H_{n}^{2}-\rho_{n}^{2} \\
& =4 R^{2}+4 R \rho_{n}+\left(\rho_{n} \cot \alpha\right)^{2} \\
r_{n} & =\frac{R^{2} \rho_{n} \tan \alpha}{4 R^{2}+4 R \rho_{n}+\rho_{n}^{2} \cot ^{2} \alpha}
\end{aligned}
$$

Substituting the value of ρ_{n} in the above expression we arrive at the desired result, namely

$$
r_{n}=\frac{R}{1+1 / 2\left[(1+\sin \pi / 8)^{2 n}+(1-\sin \pi / 8)^{2 n}\right] \cdot \sec ^{2 n} \pi / 8 \cot \pi / 8}
$$

Also solved by J.W. Clawson, Collegeville, Pennsylvania and the proposer.

Contributed Solution to Proposal 272:
Mathematics Magazine, 30, (1956-1957), 166.
273.[May 1956] Proposed by N.A. Court, University of Oklahoma.

The points of intersection of the tangents to the circumcircle of a triangle drawn at the ends of one side is collinear with the two points which that circle marks on the median issued from the opposite vertex and on the parallel through that vertex to the side considered.

1I. Solution by Huseyin Demir, Kandilli, Bolgesi, Turkey. Let the median and exmedian relative to the vertex A intersect the circumcircle at E, F respectively, and let K_{a} be the intersection of the tangents at the other vertices B, C. From the harmonic ratios

$$
A(B, C, E, F)=(A B, A C, A E, A F)=-1
$$

Contributed Solution to Proposal 332:
Mathematics Magazine, 32, (1958-1959), 52.
332. [January 1958] Proposed by Norman Anning, Alhambra, California.

Prove that there is no polynomial of degree 22 which is an exact divisor of $x^{45}+1$.

II Solution by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey. The greatest degree of an exact factor is necessarily the number of imprimitive roots of the given equation of which the roots are all distinct. Since the number $45-\phi(45)=45-24=21$ of the imprimitive roots is less than 22 , there will be no such a factor.

Also solved by D.A.Breault, Station Hospital, Fort Monmouth, New Jersey; C.F.Pinzka, University of Cincinnati; Norman Anning, Alhambra, California and the proposer. One incorrect solution was recieived.

Contributed Solution to Proposal 353:
Mathematics Magazine, 32, (1958-1959), 226.

Tangent Circles

353. [September 1958] Proposed by Karl M. Herstein, New York City, New York.

Given a line and two points not on the line. Construct two equal circles whose centers are on the given line, which pass through the given points and are tangent to each other.

Solution by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey. Let A, B, and d be the given points and the line. We distinguish two cases:
(1) The circles touch each other externally. Since the radii are equal there are no solutions except when:
(a) The circles coincide. The coincident circles contain both A and B and the center is the intersection of d and the medial line of $A B$.
(b) The point L of tangency is at infinity: In that case the solution consists of the perpendiculars to d from A and B.
(2) The circles touch each other internally. The solutions, if they exist, must be different from (1a) and (1b).
Take d as the x-axis and let $A(-u, a), B(u, b)$ and $L(\lambda, 0)$. The circles contain the reflections of A, B with respect to d and we may theresuppose $a \geqq b>0$.

Let the circles intersect d at $A^{\prime}(\alpha, 0), L(\lambda, 0)$ and $L, B^{\prime}(\beta, 0)$. We have from the right triangles $A^{\prime} A L, L B B^{\prime}$:

$$
\begin{aligned}
a^{2} & =(\lambda+u)(-u-\alpha) & b^{2} & =(\beta-u)(u-\lambda) \\
\alpha & =-\frac{a^{2}}{\lambda+u}-u & \beta & =-\frac{b^{2}}{\lambda-u}+u
\end{aligned}
$$

Equating the diameters $(\lambda-\alpha)$ and $(\beta-\lambda)$ we get a cubic equation

$$
2 \lambda^{3}+\left(a^{2}+b^{2}-2 u^{2}\right) \lambda-u\left(a^{2}-b^{2}\right)=0
$$

Substituting $a^{2}-b^{2}=2 c^{2}$, it reduces to

$$
\lambda^{3}+\left(b^{2}+c^{2}-u^{2}\right) \lambda-u c^{2}=0
$$

There are one, two (equal), or three solutions according as the discriminant Δ is positive, zero, or negative.

Now we find the relation for which

$$
\Delta=4 p^{3}+27 q^{2}=4\left(b^{2}+c^{2}-u^{2}\right)^{3}+27 u^{2} c^{4} \leqq 0
$$

where $p=b^{2}+c^{2}-u^{2}$ is necessarily not positive. Hence,

$$
\begin{gathered}
b^{2}+c^{2} \leqq u^{2} \quad \text { or } \quad b^{2}+c^{2}=u^{2} \cos ^{2} t \quad \text { where } 0 \leqq t<1 / 2 \pi \\
\Delta=4\left(u^{2} \cos ^{2} t-u^{2}\right)^{3}+27 u^{2} c^{4} \leqq 0 \\
-4 u^{6} \sin ^{6} t+27 u^{2} c^{4} \leqq 0 \\
\\
27 c^{4} \leqq 4 u^{4} \sin ^{6} t
\end{gathered}
$$

Since the quantities are not negative

$$
\sqrt{27} c^{2} \leqq 2 u^{2} \sin ^{3} t \leqq 2 u^{2}
$$

We have finally

$$
\begin{aligned}
& >2 u \\
\sqrt{27} \sqrt{a^{2}-b^{2}} & =2 u \text { one real root } \\
& <2 u \text { double or triple root } \\
& \text { three real roots }
\end{aligned}
$$

Also solved by Sam Kravitz, East Cleveland, Ohio.

Contributed Solution to Proposal 374:
Mathematics Magazine, 33, (1959-1960), 113.

Equivalent Triangles

374. [March 1959] Proposed by Victor Thebault, Tennie, Sarthe, France. If an arbitrary straight line l, passing through any point P of the plane of a triangle $A B C$, meets the straight lines $B C, C \Lambda$ and $A B$ in points A_{1},
B_{1} and C_{1}, and the points ohtained in prolonging the segments $A_{1} P^{P}, B_{1} I^{P}$, and $C_{1}{ }^{P}$, by three times their length are $A_{1}^{\prime}, B_{1}^{\prime}$, and C_{1}^{\prime}, then the mid-points of $A A_{1}^{\prime}, B B_{1}^{\prime}$ and $C C_{1}^{\prime}, A_{2}, B_{2}$, and C_{2}^{\prime}, respectively, are the vertices of a triangle, the area of which is equal to that of triangle ABC.
II. Solution by Museyin Demir, Kandilli, Eregli, Kdz, Turkey. We may express the relations between the points by vectorial equalities and arrive at the desired result by vectorial multiplication. We first note that the point P is not necessarily on d. According to the notations as stated, we have

$$
\overrightarrow{P A_{1}^{\prime}}=-3 \overrightarrow{P A_{1}} \quad \text { and } \quad 2 \overrightarrow{P A_{2}}=\vec{P} \vec{A}_{1}+\vec{P}_{1}^{\prime}=\vec{P}_{1}-3 \vec{P}_{1}
$$

Now

$$
\begin{gathered}
2 \overrightarrow{A_{2} B_{2}=} 2\left(\overrightarrow{P B_{2}}-\vec{P} A_{2}\right)=\left(\overrightarrow{P B}-3 \overrightarrow{P B_{1}}-\overrightarrow{P A}+3 \overrightarrow{P A_{1}}\right) \\
2{\overrightarrow{A_{2}} B_{2}}=\overrightarrow{A B}-3 \vec{A}_{1} B_{1}
\end{gathered}
$$

and similarly

$$
2 A_{2} C_{2}=\overrightarrow{A C}-3 A_{1} C_{1}
$$

Multiplying the last two equalities member to member and denoting by $\overline{A B C}$ the area of the oriented triangle $A B C$ we get

$$
\begin{aligned}
4 \overrightarrow{A_{2} B_{2} C_{2}} & =\left(\overrightarrow{A B}-3 \vec{A}_{1} \vec{B}_{1}\right) \times\left(\overrightarrow{A C}-3 \vec{A}_{1} C_{1}\right) \\
& =\overrightarrow{A B} \times \overrightarrow{A C}-3\left(\overrightarrow{A B} \times \overrightarrow{A_{1} C_{1}}+\overrightarrow{A_{1} B} \times \overrightarrow{A C}\right)+9 \vec{A}_{1} \vec{B}_{1} \times \overrightarrow{A_{1} C_{1}}
\end{aligned}
$$

The last term being zero

$$
\begin{aligned}
\sqrt{A_{2} B_{2} C_{2}} & =\overrightarrow{A B C}-3\left(\overrightarrow{A B} \times \overrightarrow{A_{1} A}+\overrightarrow{A_{1} A} \times \overrightarrow{A C}\right) \\
& =\overrightarrow{A B C}-3(\overrightarrow{A B}-\overrightarrow{A C}) \times \overrightarrow{A_{1} A} \\
& =\overrightarrow{A B C}+3 \overrightarrow{B C} \times \overrightarrow{C A}=4 \overrightarrow{A B C} \quad \text { Q.E.D. }
\end{aligned}
$$

This problem may be generalized as follows: If $A_{1} B_{1} C_{1}$ is an inscribed triangle of $A B C$ and if $\overrightarrow{P A_{1}^{\prime}}=-n \overrightarrow{P A_{1}}$ (in the present case $n=3$), $\overrightarrow{A A_{2}}=$ $m \overrightarrow{A A_{1}^{\prime}}$ (in the present case $m=1 / 2$), then we have

$$
\overline{A_{2} B_{2} C_{2}}=(1-m)(1-2 m+m n) \overline{A B C}+m^{2}(1-m)^{2} \overline{A_{1} B_{1} C_{1}}
$$

Also solved by Christopher Henrich (partially) and the proposer.

Contributed Solution to Proposal 383:
Mathematics Magazine, 33, (1959-1960), 228.

Disecting a Square

383. [September 1959] Proposed by Raphael T. Coffman, Richland, Washington.

Cut any square into not more than six pieces which can be reassembled to form a cube having its surface area equal to the area of the square. Bending of the pieces is permissible.
I. Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. Let a be the side of the square. The edge u of the cube is, by $6 u^{2}=a^{2}, u=a \sqrt{6} / 6$. We develop the cube as shown in (1) and assemble the rectangles to form the rectangle $A B C D$ (2). Take $A P=\sqrt{A B \cdot A D}=\sqrt{3 u \cdot 2 u}=u \sqrt{6}$. Let $B E$ be perpendicular to $A B$. Then from the similar triangles $A B E$ and $A P D$, having

$$
B E: A B=A D: A P \quad \text { and } \quad B E=A B \cdot A D / A P=A P^{2} / A P=A P,
$$

we can draw the square shown in (2). Comparing (2) and (3) we see the equivalence of $A B C D$ and the square, the side of the latter being evidently a. The number of pieces is 6 and is less than 7 .

(1)

(2)

Now, how the cube is obtained is shown by the drawings (3a), (3b)
and (4). The solution is therefore completed. If one needs to cut the square into pieces without the use of the rectangle $A B C D$ (2), note the dimensions of (5).

(3)

(3a)

(3b)

(4)

(5)

Contributed Solution to Proposal 387:
Mathematics Magazine, 33, (1959-1960), 233.

An Induction Proof

387. [September 1959] Proposed by D. S. Mitrinovitch, University of Belgrade, Yugoslavia.

Prove the relation,

$$
\left[\frac{\partial^{n}}{\partial t^{n}}\left(\frac{1}{1-t} e^{\frac{-x t}{1-t}}\right)\right]_{t=0}=e^{x} \frac{d^{n}}{d t^{n}}\left(x^{n} e^{-x}\right)
$$

n a natural number, by induction.
Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. The equality is evidently true for $n=0$. Supposing it be true for $n=p$, let us prove it for $n=p+1$. By hypothesis we have

$$
\begin{equation*}
\left[\frac{\partial^{p}}{\partial t^{p}}\left(\frac{1}{1-t} e^{-\frac{x t}{1-t}}\right)\right]_{t=0}=e^{x} \frac{d^{p}}{d x^{p}}\left(x^{p} e^{-x}\right) \tag{1}
\end{equation*}
$$

The right hand side of (1) may be obtained from the Leibniz formula (D stands for $d / d x$)

$$
\begin{aligned}
e^{x} \frac{d^{p}}{d x^{p}}\left(x^{p} e^{-x}\right) & =e^{x} \sum_{k=0}^{p}\binom{p}{k} D^{k} x^{p} \cdot D^{p-k} e^{-x}=e^{x} \sum_{k=0}^{p}(-1)^{p-k}\binom{p}{k} \frac{p!}{(p-k)!} x^{p-k} e^{-x} \\
& =e^{x} \sum_{\lambda=0}^{p}(-1)^{\lambda}\binom{p}{\lambda} \frac{p!}{\lambda!} x^{\lambda} e^{-x}
\end{aligned}
$$

As to the left hand side of (1), we have

$$
\begin{aligned}
\frac{\partial^{p}}{\partial t^{p}}\left(\frac{1}{1-t} e^{-\frac{x t}{1-t}}\right) & =\frac{\partial^{p}}{\partial t^{p}}\left(\frac{1}{1-t} e^{x-\frac{x}{1-t}}\right)=e^{x} \frac{\partial^{p}}{\partial t^{p}}\left(\frac{1}{1-t} e^{-\frac{x}{1-t}}\right) \\
& =e^{x} \frac{\partial^{p}}{\partial t^{p}} \frac{\partial}{\partial x} e^{-\frac{x}{1-t}}=e^{x} \frac{\partial}{\partial x} \frac{\partial^{p}}{\partial t^{p}} e^{-\frac{x}{1-t}} .
\end{aligned}
$$

Replacing $u=e^{-\frac{x}{1-t}}$, (1) is reduced to

$$
\begin{equation*}
\left[e^{x} \frac{\partial}{\partial x} \frac{\partial^{p}}{\partial t^{p}} u\right]_{t=0}=e^{u} \sum_{\lambda=0}^{p}(-1)^{\lambda}\binom{p}{\lambda} \frac{p!}{\lambda!} x^{\lambda} e^{-x} . \tag{2}
\end{equation*}
$$

Now, applying $\frac{\partial}{\partial t} u=x \frac{\partial^{2}}{\partial x^{2}} u$ to the left member of (2), we get

$$
\frac{\partial}{\partial x} \frac{\partial^{p}}{\partial t^{p}} u=\frac{\partial}{\partial x} \frac{\partial^{p-1}}{\partial t^{p-1}}\left(x \frac{\partial^{2}}{\partial x^{2}}\right) u=\frac{\partial}{\partial x} \frac{\partial^{p-2}}{\partial t^{p-2}}\left(x \frac{\partial^{2}}{\partial x^{2}}\right)\left(x \frac{\partial^{2}}{\partial x^{2}}\right) u=\cdots=\frac{\partial}{\partial x}\left(x \frac{\partial^{2}}{\partial x^{2}}\right)^{p} u
$$

and

$$
\left[\frac{\partial}{\partial x}\left(x \frac{\partial^{2}}{\partial x^{2}}\right) p_{u}\right]_{t=0}=\frac{\partial}{\partial x}\left(x \frac{\partial^{2}}{\partial x^{2}}\right)^{p} e^{-x}=D\left(x D^{2}\right)^{p} e^{-x}
$$

The equality reduces therefore to (3)

$$
\begin{equation*}
D\left(x D^{2}\right)^{p} e^{-x}=\sum_{\lambda=0}^{p}(-1)^{\lambda}\binom{p}{\lambda} \frac{p!}{\lambda!} x^{\lambda} e^{-x} . \tag{3}
\end{equation*}
$$

The proof of the statement is completed if we can prove (3) for p replaced by $p+1$. Now,

$$
D\left(x D^{2}\right)^{p+1} e^{-x}=D\left(x D^{2}\right)\left(x D^{2}\right)^{p} e^{-x}=D x D\left[D\left(x D^{2}\right)^{p} e^{-x}\right]
$$

$$
\begin{aligned}
& =D x D \sum_{\lambda=0}^{p}(-1)^{\lambda}\binom{p}{\lambda} \frac{p!}{\lambda!} x^{\lambda} e^{-x}=D x D \sum_{\lambda=0}^{p} a_{\lambda} x^{\lambda} e^{-x} \\
& =\left(a_{1}-a_{0}\right)+\sum_{\lambda=1}^{p-1}\left[(\lambda+1)^{2} a_{\lambda+1}-(2 \lambda+1)_{a_{\lambda}+a}{ }_{\lambda-1} x^{\lambda} e^{-x}+\right.
\end{aligned}
$$

$$
\left[-(2 p+1) a_{p}+a_{p-1}\right] x^{p} e^{-x}+a_{p} x^{p+1} e^{-x}
$$

$$
\begin{equation*}
=-(p+1)!+\sum_{\lambda=1}^{p-1} b \lambda^{x^{\lambda}} e^{-x}+(-1)^{p-1}(p+1)^{2} x^{p} e^{-x}+(-1)^{p} x^{p+1} e^{-x} \tag{4}
\end{equation*}
$$

where the first and the last two coefficients are obtained through a_{λ}, and

$$
\begin{aligned}
b_{\lambda} & =(\lambda+1)^{2} a_{\lambda+1}-(2 \lambda+1) a_{\lambda}+a_{\lambda-1} \quad(1 \leqq \lambda \leqq p-1) \\
& =(\lambda+1)^{2}(-1)^{\lambda+1}\binom{p}{\lambda+1} \frac{p!}{(\lambda+1)!}-(2 \lambda+1)(-1)^{\lambda}\binom{p}{\lambda} \frac{p!}{\lambda!}+(-1)^{\lambda-1}\binom{p}{\lambda-1} \frac{p!}{(\lambda-1)!} \\
& =(-1)^{\lambda-1} \frac{p!}{\lambda!(p-\lambda+1)!} \frac{p!}{\lambda!}\left[(p-\lambda)(p-\lambda+1)+(2 \lambda+1)(p-\lambda+1)+\lambda^{2}\right] \\
& =(-1)^{\lambda-1} \frac{p!}{\lambda!(p-\lambda+1)!} \frac{p!}{\lambda!} \cdot(p+1)^{2}=(-1)^{\lambda-1} \frac{(p+1)!}{\lambda!(p-\lambda+1)!} \frac{(p+1)!}{\lambda!} \\
& =(-1)^{\lambda-1}\binom{p+1}{\lambda} \frac{(p+1)!}{\lambda!}
\end{aligned}
$$

It is easy to see that the first and the last two coefficients of (4) are b_{0}, b_{p} and b_{p+1}, and hence

$$
D\left(x D^{2}\right)^{p-1} e^{-x}=\sum_{\lambda=0}^{p+1}(-1)^{\lambda-1}\binom{p+1}{\lambda} \frac{(p+1)!}{\lambda!} x^{\lambda} e^{-x}
$$

Thus the equality being proved for $n=p+1$, it will be true for all integral values of n and the proof is completed.

Contributed Solution to Proposal 400:
Mathematics Magazine, 34, (1960-1961), 53.

A Triangle Construction

400. [January 1960] Proposed by W. B. Carver, Cornell University.

Given a point, a circle, and any curve in a plane. Construct an equilateral triangle having a vertex on each of them.
II. Solution by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.

Let $A,(b),(c)$ be the given point, circle and curve. If, then, $A B C$ is the solution, the vertex C on (c) is obtained from the vertex B on (b) by a rotation about A with the angles 60 and -60 degrees. Hence the unknown vertices on (c) are obtained by intersecting (c) with new positions of (b) after such rotations. The constructions of the triangles are then immediate.

Also solved by Harry M. Gehman, University of Buffalo; Rostyslaw J. Lewyckyj, University of Toronto; Harvey Walden (partial solution); and the proposer.

Contributed Solution to Proposal 401:
Mathematics Magazine, 34, (1960-1961), 55.

A Fibonacci Series

401. [January 1960] Proposed by John M. Howell, Los Angeles City College. Given a sequence of numbers related by $F(n)=a F(n-1)+b F(n-2)$, $F(0)=c$ and $F(1)=d$, where $n=0,1,2, \cdots$ and a, b, c, and d are any real numbers. Find a general form for $F(n)$.
II. Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey. We have successively

$$
\begin{aligned}
& F(0)=c \\
& =c \\
& F(1)=d \\
& =d \\
& F(2)=a F(1)+b F(0) \\
& =\binom{1}{0} a d+\binom{0}{0} b c \\
& F(3)=a F(2)+b F(1) \\
& =\left(a^{2}+b\right) F(1)+a b F(0) \quad=\left[\binom{2}{0} a^{2}+\binom{1}{1} b\right] d+\left[\begin{array}{l}
1 \\
0
\end{array}\right) a b c \\
& F(4)=a F(3)+b F(2) \\
& =\left(a^{3}+2 a b\right) F(1)+\left(a^{2} b+b^{2}\right) F(0)=\left[\binom{3}{0} a^{3}+\binom{2}{1} a b\right] d+\left[\binom{2}{0} a^{2} b+\binom{1}{1} b^{2}\right] c
\end{aligned}
$$

and in general

$$
\begin{aligned}
F(n)= & {\left[\binom{n-1}{0} a^{n-1}+\binom{n-2}{1} a^{n-3} b+\binom{n-3}{2} a^{n-5} b^{2}+\cdots\right] d } \\
& +\left[\binom{n-2}{0} a^{n-2}+\binom{n-3}{1} a^{n-4} b+\binom{n-4}{2} a^{n-6} b^{2}+\cdots\right] b c
\end{aligned}
$$

which may be proved by induction.
III. Alternate solution by Huseyin Demir.

Writing the relation for $n=2, \cdots, n$ we have a system of equations in the unknowns $F(2), \cdots, F(n)$:

$$
\begin{aligned}
F(n)-a F(n-1)-b F(n-2) & =0 \\
& =0 \\
F(n-1)-a F(n-2)-b F(n-3) & \\
\cdots(4)-a F(3)-b F(2) & =0 \\
F(3)-a F(2) & =b F(1) \\
F(2) & =a F(1)-b F(0)
\end{aligned}
$$

The determinant of the system being 1 we have

$$
F(n)=\left|\begin{array}{rrrrrr}
0 & -a & -b & 0 & \cdots & 0 \\
0 & 1 & -a & -b & 0 & 0 \\
& 0 & 1 & -a & -b & \\
0 & 0 & & 1 & -a & -b \\
b d & 0 & & 0 & 1 & -a \\
a d+b c & 0 & \cdots & & 0 & 1
\end{array}\right|_{n-1}
$$

where the index denotes the order of the determinant.
Expanding it with respect to the first column and arranging, we have the final result
$F(n)=(b c+a d)\left|\begin{array}{rrrrr}a & b & 0 & \cdots & 0 \\ -b & a & b & & \vdots \\ 0 & -b & a & b & \\ \vdots & \ddots & \ddots & \ddots & 0 \\ & & -b & a & b \\ 0 & \cdots & 0 & -b & a\end{array}\right|_{n-2}\left|\begin{array}{rrrrr}a & b & 0 & \cdots & 0 \\ -b & a & b & & \vdots \\ 0 & -b & a & b & \\ \vdots & & \ddots & \ddots & \ddots \\ & & 0 \\ 0 & \cdots & 0 & -b & a \\ & & & b & a\end{array}\right|_{n-i}$
IV. Alternate solution by Huseyin Demir.

Writing the given relation

$$
F(n)=a F(n-1)+b F(n-2)
$$

in the form

$$
\frac{F(n)}{F(n-1)}=a+\frac{b}{F(n-1) / F(n-2)}
$$

and letting $u_{n}=F(n) / F(n-1)$ we have successively

$$
\begin{aligned}
u_{n}= & a+b / u_{n-1} \\
= & a+\frac{b}{a+b / u_{n-2}} \\
& \cdots \\
u_{n}= & a+\frac{b}{a+\frac{b}{a+\ddots}}
\end{aligned}
$$

Multiplying member to member the relations

$$
\begin{gathered}
F(n)=u_{n} F(n-1) \\
\cdot \cdot \\
F(2)=u_{2} F(1) \\
F(1)=u_{1} F(0)
\end{gathered}
$$

we have for the general form for $F(n)$:

$$
F(n)=u_{1} u_{2} \cdots u_{n} \cdot c
$$

Also solved by D. A. Breault, Sylvania Electric Products, Inc., Waltham, Massachusetts; R.G. Buschman, University of Oregon; F.D. Parker, University of Alaska; Charles F. Pinzka, University of Cincinnati; Chihyi Wang, University of Minnesota; and the proposer.

Contributed Solution to Proposal 412:
Mathematics Magazine, 34, (1961), 175.

Projective Correspondence

412. [May 1960] Proposed by D. Moody Bailey, Princeton, West Virginia.
P is any point on the circumcircle of triangle $A B C$. Rays from B and C through P meet $C A$ and $A B$ at points E and F respectively. Considering the segments involved as directed quantities, show that

$$
\frac{b^{2}}{a^{2}} \cdot \frac{B F}{F A}+\frac{c^{2}}{a^{2}} \cdot \frac{C E}{E A}=-1
$$

where a, b, and c are the sides opposite the vertices A, B, and C of triangle $A B C$.

Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.
Having a projective correspondence between the points E and F, we have, letting $e=C E / E A, f=B F / F A$, the bilinear relation

$$
A \cdot e f+B \cdot e+C \cdot f+D=0
$$

where A, B, C, D are constants. To find the values of these coefficients we let P coincide with the points A, B, C successively. If $P=A, e$ and f are infinite and $A=0$. If $P=B$, then $B E$ is an exsymedian; and we have $e=-a^{2} / c^{2}, f=0$ and hence

$$
-\frac{B \cdot a^{2}}{c^{2}}+D=0 \quad \text { or } \quad B=\frac{c^{2}}{a^{2}} D
$$

and similarly

$$
-\frac{C \cdot a^{2}}{b^{2}}+D=0 \quad \text { or } \quad C=\frac{b^{2}}{a^{2}} D
$$

Substitution gives the required result.
Also solved by Josef Andersson, Vaxholm, Sweden; Leon Bankoff, Los Angeles, California; A. F. Hordam, University of New England, Armidale, NSW, Australia; and the proposer.

Contributed Solution to Proposal 427:
Mathematics Magazine, 34, (1961), 303.

A Cevian Relation

427. [November 1960] Proposed by D. Moody Bailey, Princeton, West Virginia.
P is any point in the plane of a triangle $A B C$ through which cevians from B and C are drawn meeting sides $C A$ and $A B$ at points E and F reapectively. M is the midpoint of $B C$ and line $M P$ meets $C A$ at N and $A B$ at O. $E F$ extended meets $B C$ at G and a line through B parallel to $A G$ meets $C F$ at H. Show that $H O$ is parallel to $C A$.

Solution by Huseyin Demir, Kandilli, Eregli, Kdz, Turkey.
Let the points A, B, C, M and F be fixed and the geometrically interrelated points P, O, N, G, E, H be variable. Then from

$$
O_{\overline{\boldsymbol{\pi}}}^{M} P \frac{B}{\overline{\boldsymbol{\pi}}} E \frac{F}{\overline{\boldsymbol{\pi}}} \mathfrak{G} \overline{\overline{\mathbf{\pi}}} A G \overline{\overline{\mathbf{\pi}}} B H_{\overline{\mathbf{\pi}}} H
$$

we have $O \pi H$ of which F being the self corresponding element we deduce the perspectivity $O \bar{\pi} H$. Hence $O H$ passes through a fixed point L. When O is at infinity on $A B, H$ is also at infinity on $C F$, and hence L is at infinity. $O H$ keeps then a fixed direction. But when $O \equiv B$, having $O H \equiv$ $B H / / A B$ the proof follows.

Also solved by the proposer.

Contributed Solution to Proposal 428:
Mathematics Magazine, 34, (1961), 303.

Permuted Digits

428. [November 1960] Proposed by Murray S. Klamkin, AVCO, Wilmington, Mas sachusetts.

The number $N=142,857$ has the property that $2 N, 3 N, 4 N, 5 N$, and $6 N$ are all permutations of N. Does there exist a number M such that $2 M$, $3 M, 4 M, 5 M, 6 M$, and $7 M$ are all permutations of M ?
I. Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

Since we get all permutations of M by $1 M, 2 M, \ldots, 7 M$ the number M, if it exists, is a seven-digit number.

Let $M=a b c d e f g=G g$ where $G=a b c d e f$ and let $1 \leqq p \leqq 7$ such that $p \cdot G g=g G$. Then

$$
p(10 G+g)=10^{6} g+G
$$

or

$$
G=\frac{\left(10^{6}-p\right) g}{(10 p-1)}=N_{p} \cdot \frac{g}{D p}
$$

Now

\underline{p}	$\frac{N_{p}}{n}$	D_{p}		N_{p} / D_{p}	
1	999,999	9		$\left(N_{p} / 3\right) / D_{p}$	
2	999,998		19	Irreducible	\cdot
3	999,997	29	Irreducible	\cdot	
4	999,996	$39=3.13$		\cdot	Irreducible
5	999,995	$49=7.7$	Irreducible	\cdot	
6	999,994	59	Irreducible	.	
7	999,993	$69=3.23$.	Irreducible

Since the coefficient N_{p} / D_{p} of g is not an integer except when $p=1$, there is no solution for G other than $\overline{g g g, g g g}$. But $M=G g=\overline{g g g g g g g}$ cannot be a solution.

Hence there is no solution to the problem.
II. Comment by Dermott A. Breault, Sylvania Electric Products, Inc., Waltham, Massachusetts.

The number $M=5882352941176470$ has the property that $k M$ is a permutation of M for $k=2,3, \ldots, 16$. The number

$$
L=3448275862068965517241379310
$$

has the property that $k L$ is a permutation of L for $k=2,3, \ldots, 28$. (M consists of the digits in one cycle of the decimal expansion of $1 / 17$, and is 16 digits long, while L was similarly derived from $1 / 29$. I believe that it is correct that when p is prime and $1 / p=Q$ has cycle length $p-1$, then $k Q$ will be a permutation of Q for $k=2,3, \cdots, p-1$.)

Contributed Solution to Proposal 432:
Mathematics Magazine, 34, (1961), 365.

Cevian Lines

432. [January 1961] Proposed by Lee Tih-Ming, Taipei, Taiwan.

A point O interior to triangle $A B C$ is joined to the vertices. From O perpendiculars $O X, O Y, O Z$ are dropped to the sides $B C, C A, A B$, respectively. $A O$ and $Y Z$ intersect in $D, B O$ and $Z X$ in E, and $C O$ and $X Y$ in F. Show that

$$
\frac{A Z}{Z B} \cdot \frac{B X}{X C} \cdot \frac{C Y}{Y A}=\frac{Z D}{D Y} \cdot \frac{Y F}{F X} \cdot \frac{X E}{E Z}
$$

II. Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.

The point O is not necessarily within the triangle. Letting

$$
\begin{aligned}
\alpha & =\Varangle B A O & \beta & =\Varangle C B O \\
\alpha^{\prime} & =\Varangle O A C & \gamma & =\Varangle A C O \\
\beta^{\prime} & =\Varangle O B A & \gamma^{\prime} & =\Varangle O C B
\end{aligned}
$$

we write from the triangles such as $A Z D$ and $A D Y$, the relations

$$
\frac{Z D}{\sin \alpha}=\frac{A Z}{\sin D}, \frac{D Y}{\sin \alpha^{\prime}}=\frac{Y A}{\sin D} \text { and } \frac{Z D}{D Y}=\frac{A Z}{Y A} \cdot \frac{\sin \alpha}{\sin \alpha^{\prime}}
$$

and two others. Multiplying the three ratios member to member we obtain

$$
\frac{Z D}{D Y} \cdot \frac{Y F}{F X} \cdot \frac{X E}{E Z}=\frac{A Z}{Z B} \cdot \frac{B X}{X C} \cdot \frac{C Y}{Y A} \cdot\left(\frac{\sin \alpha}{\sin \alpha^{\prime}} \cdot \frac{\sin \beta}{\sin \beta^{\prime}} \cdot \frac{\sin \gamma}{\sin \gamma^{\prime}}\right) .
$$

But the expression in the parenthesis is 1 , since $A O, B O, C O$ are concurrent. Hence the equality is true for all points in the plane of $A B C$.

Also solved by Brother Alfred, St. Mary's College, California; Josef Andersson, Vaxholm, Sweden; C.W. Trigg, Los Angeles City College; Dale Woods, Oklahoma State University; and the proposer.

Contributed Solution to Proposal 435:
Mathematics Magazine, 34, (1961), 368.

Triangular Extrema

435. [January 1961] Proposed by M. S. Klamkin, AVCO, Wilmington, Massachusetts.

Determine the largest and the smallest equilateral triangles that can be inscribed in an ellipse.

Solution by Huseyin Demir, Kandilli, Eregli, Kdz., Turkey.
Let $A_{1} A_{2} A_{3}$ be an equilateral triangle inscribed in the ellipse

$$
\begin{equation*}
\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1 \quad(E) \quad a>b \tag{1}
\end{equation*}
$$

and let

$$
\begin{equation*}
(x-u)^{2}+(y-v)^{2}-r^{2}=0 \tag{2}
\end{equation*}
$$

be the circle circumscribed to $A_{1} A_{2} A_{3}$. It cuts (E) at the fourth point $A_{4}\left(x_{4}, y_{4}\right)$.

Eliminating y between (1) and (2) we get an equation of fourth degree in x

$$
c^{4} \cdot x^{4}-4 a^{2} c^{2} u \cdot x^{3}+\cdots=0
$$

of which the roots are $x_{1}, x_{2}, x_{3}, x_{4}$.
If we elimate x between (1) and (2), the corresponding equation will be

$$
c^{4} \cdot y^{4}+4 b^{2} c^{2} v \cdot y^{3}+\cdots=0
$$

and the roots are $y_{1}, y_{2}, y_{3}, y_{4}$.
Since $A_{1} A_{2} A_{3}$ is an equilateral triangle, we have

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=3 u \\
& y_{1}+y_{2}+y_{3}=3 v
\end{aligned}
$$

and

$$
x_{4}=\sum x_{i}-3 u=\frac{4 a^{2} u}{c^{2}}-3 u=\frac{\left(a^{2}+3 b^{2}\right) u}{c^{2}}
$$

$$
\begin{equation*}
y_{4}=\sum y_{i}-3 v=-\frac{4 b^{2} v}{c^{2}}-3 v=-\frac{\left(b^{2}+3 a^{2}\right) v}{c^{2}} . \tag{3}
\end{equation*}
$$

The coordinates (3) satisfying (1) we obtain the relation

$$
\begin{equation*}
\left(u^{2} / \alpha^{2}\right)+\left(v^{2} / \beta^{2}\right)=1 \tag{4}
\end{equation*}
$$

where

$$
\alpha=\frac{a c^{2}}{a^{2}+3 b^{2}}, \quad \beta=\frac{b c^{2}}{b^{2}+3 a^{2}} .
$$

Hence the centers of the circles (Ω) lie on the ellipse (4) of which $\alpha>\beta$.
Now since the largest and the smallest triangles correspond to the greatest and the smallest values of the radius r of the circle (Ω), we write

$$
\begin{aligned}
r^{2} & =\left(x_{4}-u\right)^{2}+\left(y_{4}-v\right)^{2} \\
& =\frac{(a-\alpha)^{2} u^{2}}{\alpha^{2}}+\frac{(b+\beta)^{2} v^{2}}{\beta^{2}} \\
& =A u^{2}+(b+\beta)^{2}=B v^{2}+(a-\alpha)^{2} .
\end{aligned}
$$

$d r / d u=0$ gives

$$
u=0 \quad \text { and } \quad r_{1}=b+\beta .
$$

Similarly $d r / d v=0$ gives

$$
r_{2}=a-\alpha,
$$

and one may readily verify that $r_{1}>r_{2}$.
Hence, the largest (smallest) equilateral triangles inscribed in the ellipse, are ones inscribed to the circles of center $u=0, v= \pm \beta$ ($u= \pm \alpha$, $v=0$) and radius $b+\beta(a-\alpha)$.

There are four solutions, two for the largest and two for the smallest triangles.

Constructions: The largest (smallest) triangles inscribed in an ellipse, have one of their vertices at the extremities of the minor (major) axis of the ellipse, the axis being the axis of symmetry of the triangle.

Also solved by Josef Andersson, Vaxholm, Sweden; J.W. Clawson, Collegeville, Pennsylvania (Two solutions); and J.W.Mellender, University

Contributed Solution to Proposal 445:
Mathematics Magazine, 35, (1962), 317.
445. [March and November 1961]. Comment by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

The proof needs a little modification. Read: Let the orthogonal projection of A, B and P on the line $O M$ be A^{\prime}, B^{\prime} and P^{\prime}. In the remaining part of the proof all letters P are to be replaced by P^{\prime} and in conclusion we have

$$
\frac{M A^{2}-k}{M B^{2}-k}=\frac{20 M \cdot A^{\prime} P^{\prime}}{20 M \cdot B^{\prime} P^{\prime}}=\frac{A^{\prime} P^{\prime}}{B^{\prime} P^{\prime}}=\frac{P A}{P B}
$$

Contributed Solution to Proposal 476:
Mathematics Magazine, 35, (1962), 312.

Perimeter and Area Bisector

476. [March 1962]. Proposed by Kaidy Tan, Fukien Normal College, China.

Draw a straight line bisecting the perimeter and area of a given quadrilateral.
Solution by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

We consider two cases according as the line intersects two adjacent or two opposite sides. Either case includes the case in which the line contained a vertex.
I. The line intersects two adjacent sides (fig. 1.)

Fig. 1
(a) The line bisects the area:

Drawing $C C^{\prime} \| B D$ we have area $A B C D=A B D+B C D=A B D+B C^{\prime} D=A C^{\prime} D$. Let I be the midpoint of $A C^{\prime}$, and M be a point on $A B$. Drawing $I N \| M D$ we have $A M N=A I N+I M N=A I N+I D N=A I D=\frac{1}{2} A C^{\prime} D=\frac{1}{2} A B C D$. Hence $M N$ so constructed bisects the area. The constructions give:

Let $A M=m, A N=n$, then

$$
\begin{gathered}
A C^{\prime} / A C=A B / A K=a / \alpha, \quad A C^{\prime}=a \cdot A C / \alpha=p a / \alpha \\
A M / A D=A I / A N, \quad m n=A I \cdot A D=\frac{1}{2} A C^{\prime} \cdot d=p a d / 2 \alpha \\
2 m n=p a d / \alpha
\end{gathered}
$$

(b) The line bisects the perimeter:

$$
m+n=A M+A N=\frac{1}{2}(a+b+c+d)
$$

Therefore m, n determining the line $M N$ are the roots of the quadratic equation:

$$
2 x^{2}-(a+b+c+d) x+p a d / \alpha=0
$$

For the existence of $M N$ we have the conditions:
(1) $m \leq b, n \leq d$ or $a+b+c+d=2 m+2 n \leq 2 b+2 d$ or $b+c \leq a+d$
(2) $p a d / \alpha=2 m n \leq 2 a d$ or $p \leq 2 \alpha, \alpha+\gamma 2 \alpha, \alpha \geq \gamma$.
(3) $\Delta=(a+b+c+d)^{2}-8 p a d / \alpha \geq 0$.
II. The line intersects two opposite sides.
(a) The line bisects the area:

Fig. 2

Fig. 3
Let M be any point on $A B$ (fig. 3). Draw $B B^{\prime} \| M C$, and $A A^{\prime} \| M D$. Then: $A B C D=A M D+M C D+B C M=A^{\prime} M D+M C D+B^{\prime} C M=M D A^{\prime}$ $+M C D+M B^{\prime} C=M B^{\prime} A^{\prime}$. If N is the midpoint of $A^{\prime} B^{\prime}$, the lkne $M N$ will bisect $M B^{\prime} A^{\prime}=A B C D$. Let $O M=m, O N=n, O A=a^{\prime}, O B=b^{\prime}, O C=c^{\prime}, O D=d^{\prime}$, $O A^{\prime}=a^{\prime \prime}, O B^{\prime}=b^{\prime \prime}$. Then from the constructions:

$$
\begin{aligned}
m / c^{\prime} & =b^{\prime} / b^{\prime \prime}, \quad m / d^{\prime}=a^{\prime} / a^{\prime \prime} \\
2 n & =a^{\prime \prime}+b^{\prime \prime}=a^{\prime} d^{\prime} / m+b^{\prime} c^{\prime} / m=\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right) / m \\
2 m n & =a^{\prime} d^{\prime}+b^{\prime} c^{\prime} .
\end{aligned}
$$

(b) The line bisects the perimeter:

$$
\begin{aligned}
& M A+A D+D N=M B+B C+C N \\
& \left(m-a^{\prime}\right)-d+\left(n-d^{\prime}\right)=\left(b^{\prime}-m\right)+b+\left(c^{\prime}-n\right) \\
& 2(m+n)=\left(a^{\prime}+b^{\prime}+c^{\prime}+d^{\prime}\right)+(b-d .)
\end{aligned}
$$

Therefore m, n determining the line $M N$ are the roots of the quadratic equation

$$
2 x^{2}-\left(a^{\prime}+b^{\prime}+c^{\prime}+d^{\prime}+b-d\right) x+\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right)=0
$$

The existence of $M N$ is given by $a^{\prime} \leq m \leq b^{\prime}, d^{\prime} \leq m \leq c^{\prime}$ which yield $a+c+b$ $\geq d$ and $a+c+d \geq b$ which are always true.

Contributed Solution to Proposal 646:
Mathematics Magazine, 40, (1967), 226.

The Complete Quadrilateral

646. [January, 1967] Proposed by V. F. Ivanoff, San Carlos, California.

Denoting the pairs of opposite vertices of a complete quadrilateral by A and A^{\prime}, B and B^{\prime}, C and C^{\prime}, respectively, prove that

$$
\frac{A B \cdot A B^{\prime}}{A^{\prime} B \cdot A^{\prime} B^{\prime}}=\frac{A C \cdot A C^{\prime}}{A^{\prime} C \cdot A^{\prime} C^{\prime}} .
$$

I. Solution by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

Writing the equality in the form

$$
(A B / A C)\left(A B^{\prime} / A C^{\prime}\right)\left(A^{\prime} C^{\prime} / A^{\prime} B\right)\left(A^{\prime} C / A^{\prime} B^{\prime}\right)=1
$$

and replacing each fraction by its equivalent given by the sine law we have

$$
(\sin C / \sin B)\left(\sin C^{\prime} / \sin B^{\prime}\right)\left(\sin B / \sin C^{\prime}\right)\left(\sin B^{\prime} / \sin C\right)=1
$$

which is an identity.

Contributed Solution to Proposal 653:
Mathematics Magazine, 42, (1969), 283.

Exponential Derivative

653. [March, 1967] Proposed by by Sam Newman, Atlantic City, New Jersey. What is $d y / d x$ of

III. Solution by Huseyin Demir, Middle East Technical University, Ankara, Turkey.

The given function may be defined by the recurrence relation $y_{n}=x^{y_{n-1}}$, $y_{1}=x^{x}, y_{0}=x, y_{-1}=1$. Taking logarithms and differentiating we obtain

$$
\frac{y_{n}^{\prime}}{y_{n}}=\frac{y_{n-1}^{\prime}}{y_{n-1}}\left(y_{n-1} \ln x\right)+\frac{y_{n-1}}{x}
$$

Writing the last equality from $n=1$ up to $n=n$ and multiplying each relating by a suitable factor and adding them up we get

$$
y_{n}^{\prime}=\sum_{k=0}^{n} y_{n} y_{n-1} \cdots y_{n-k-1}(\ln x)^{k} / x
$$

Also solved by Pierre Bouchard, Université de Montréal, Canada; Nicholas C. Bystrom, St. Paul, Minnesota; Richard W. Feldman, Lycoming College, Pennsylvania; David Fettner, City College of New York; Reinaldo E. Giudici, University of Pittsburgh; Michael Goldberg, Washington, D.C.; Sandra A. Gossum, University of Tennessee; J. M. Howell, Los Angeles City College; Richard A. Jacobson, Houghton College, New York; Lew Kowarski, Morgan State College, Maryland; Fred Lambie, Lexington, Massachusetts; Douglas Lind, University of Virginia; Edwin A. Power, University College, London, England; and the proposer. A number of incorrect or undecipherable solutions were received.

Contributed Solution to Proposal 1199:
Mathematics Magazine, 58, (1985), 243.

Perpendicular Lines in an Isosceles Triangle

September 1984
1199. In the isosceles triangle $A B C$, with $A B=A C$, let H be the foot of the altitude from A, let E be the foot of the perpendicular from H to $A B$, and let M be the midpoint of $E H$. Show that $A M \perp E C$. [Aristomenis Siskakis, University of Illinois.]

Solutions I and II: I. Let $C K$ be the altitude from C. In the similar right triangles EHA and $K B C$, the corresponding medians $A M$ and $C E$ make equal angles with the hypotenuses $H A$ and $B C$. Let these medians intersect at L. Then the quadrangle $H C A L$ is cyclic. Hence $\angle A L C=$ $\angle A H C=90^{\circ}$.
II. We use harmonic pencils. Let $C K$ be the altitude from C, and construct the rectangle $A K C N$. Since the segment $H E$, parallel to $A N$, is bisected by $A M$, we have $(A B, A H ; A M, A N)=$ -1 . Similarly, since the segment $B K$, parallel to $C N$, is bisected by $C E$, we have $(C K, C B ; C E, C N)=-1$. In the two harmonic pencils, three lines are perpendicular to corresponding lines. Hence the fourth lines, namely, $A M$ and $C E$, are perpendicular.

Hüseyin Demir
Middle East Technical University Ankara, Turkey

[^5]Contributed Solution to Proposal 1256:
Mathematics Magazine, 61, (1988), 54.

Cyclic Quadrilateral

December 1986
1256. Proposed by R. S. Luthar, University of Wisconsin Center, Janesville.

Let $A B C D$ be a cyclic quadrilateral, let the angle bisectors at A and B meet at E, and let the line through E parallel to side $C D$ intersect $A D$ at L and $B C$ at M. Prove that $L A+M B=L M$.

II. Solution by H. Demir and C. Tezer, Middle East Technical University, Ankara, Turkey.

Let $\angle D A B=2 \alpha, \angle A B C=2 \beta, \angle B C D=2 \gamma, \angle C D A=2 \delta$. Clearly, $\angle E L A=2 \delta$, $\angle B M E=2 \gamma$, and $\alpha=\frac{\pi}{2}-\gamma, \beta=\frac{\pi}{2}-\delta$. We'll assume that $A B C D$ is convex and
$\alpha>\beta$.
Choose a point S on $L M$ on the same side of $A D$ as M such that $|L S|=|L A|$ (see figure).

Obviously, $\angle A S L=\angle L A S=\beta$. Therefore, $A S E B$ is a cyclic quadrilateral. As $\angle L A S=\beta<\alpha=\angle L A E$, it follows that S is between L and E.

On the other hand, $\angle S B M=\angle S B E+\angle E B M=\angle S A E+\angle E B M=\angle L A E-\angle L A S+$ $\beta=\alpha-\beta+\beta=\alpha=\angle B S M$. Consequently, MBS is an isosceles triangle and $|M S|=$ $|M B|$. Therefore, $|L M|=|L S|+|S M|=|L A|+|M B|$.

III. Solution by John P. Hoyt, Lancaster, Pennsylvania.

Produce $D A$ and $C B$ to meet at X. Draw $F H$ parallel to $A B$. Draw XE (see figure).

Since E is the intersection of two exterior angles of triangle $X A B, X E$ is the bisector of $\angle A X B$. Triangles $M L X$ and $H F X$ are congruent because they have equal angles and a common angle bisector. The equal angles follow from the fact that the opposite angles of a cyclic quadrilateral are supplementary. Hence $M E=F E, H E=$ $L E$, and $H M=L F$. Since $F H$ is parallel to $A B$, and $A E$ bisects $\angle D A B, \angle F A E=$ $\angle A E F$. Thus, triangle $F A E$ is isosceles, and $A F=F E$. Similarly, $B H=E H$.

The rest follows easily: $L A+M B=(A F-L F)+(B H+H M)=(A F+B H)+$ $(H M-L F)=A F+B H=F E+E H=L M$.

[^6]
[^0]: Also solved by Josef Andersson, Vaxholm, Sweden; Michael J. Pascual, Watervliet Arsenal, New York; Hazel S. Wilson, Jacksonville University, Florida; and the proposer.

 Dermott A. Breault, Sylvania Electric Products, Inc., Waltham, Massachusetts; P. R. Nolan, Department of Education, Dublin, Ireland; and Brother Louis F. Zirkel, Archbishop Molloy High School, Jamaica, New York; each pointed out that the proposal is incorrect if the figures FMN and $N^{\prime} M^{\prime} M N$ are considered to be the rectilinear areas instead of areas bounded by the arc of the parabola, $M N$.

 One incorrect solution was received.

[^1]: Also solved by Michael Goldberg, Washington, D. C.; Murray S. Klamkin, Ford Scientific Laboratory, Dearborn, Michigan; Lew Kowarski, Morgan State College, Maryland; John Oman, Wisconsin State University, Oshkosh; E. F. Schmeichel, College of Wooster, Ohio; and the proposer.

[^2]: Also solved by Gerald Bergum, M. G. Greening (Australia), Daniel Mark Rosenblum, J. M. Stark, and the proposer.

[^3]: Also solved as in solution I by Jordi Dou (Spain), Howard Eves, Syrous Marivani, Mike Molloy (student, Canada), Richard Parris, Cem Tezer (Turkey), and Michael Woltermann; as in the generalized solution II (but using the theorems of Ceva and Menelaus) by Cem Tezer (Turkey, second solution); using analytic geometry by S. F. Barger, Kenneth Bernstein, Ragnar Dybvik (Norway), Cornelius Groenewoud, Boulkhodra Hacene, L. Kuipers (Switzerland), Hubert J. Ludwig, Bill Olk (student), John Oman, Harry Sedinger, Robert S. Stacy (West Germany), John S. Sumner, Michael Vowe (Switzerland), Jihad Yamout (student), and Robert L. Young; using barycentric or similar coordinate systems by O. Bottema (The Netherlands), J. T. Groenman (The Netherlands, two solutions), J. C. Linders (The Netherlands), and the proposer; using conjugate complex coordinates by Howard Eves (second solution) and Stephanie Sloyan; and using vector analysis by Leonard D. Goldstone and Harry D. Ruderman.

[^4]: Also solved by Raúl Marin Carrera (student, Mexico), Jordi Dou (Spain), Jiro Fukuta (Japan), Václav Konečný, Alvaro Avila Márquez (student, Mexico), Richard E. Pfiefer, Ioan Sadoveanu, Jyotirmoy Sarkar (student), Seshadri Sivakumar (Canada), John S. Sumner, and the proposer.

 Pfiefer obtained the solution by inverting the figure through a circle with center A.

[^5]: Also solved by sixty-two others (including the proposer and eight students), who submitted seventy-three solutions.
 Joseph Konhauser located the problem in the Monthly, problem E1476, with three published solutions in v. 69 (1962), p. 233. Four other solvers of that problem forgot to mention the fact when submitting solutions to this problem. P. J. Pedler (Australia) and J. H. Webb (South Africa) found the problem in Loren C. Larson, Problem
 Solving Through Problems, p. 27, and Geoffrey A. Kandall found it in M. N. Aref \& W. Wernick, Problems and Solutions in Elementary Geometry, p. 32, ex. 92. O. Bottema (The Netherlands) and Webb provided converses. (1) If $A B C$ is any triangle, then $A M \perp E C$ if and only if $A B=A C$. (2) If E is any point on the line $A B$, then $A M \perp E C$ if and only if either $H E \perp A B$ or A is the midpoint of $B E$. (Other points are defined as in the problem statement.)

[^6]: Also solved by Frank Allen, Farid G. Bassiri (student), Andreas Bender (student, Switzerland), Nirdosh Bhatnagar, David Earnshaw (Canada), Howard Eves, Herta T. Freitag, Richard A. Gibbs, J. T. Groenman (Netherlands), Michael B. Handelsman, P. L. Hon (Hong Kong), King Jamison, Geoffrey A. Kandall, Tsz-Mie Ko (student), Mary S. Krimmel, L. Kuipers (Switzerland), Kee-wai Lau (Hong Kong), J. C. Linders (The Netherlands), David Morin (student, four solutions), Anna Michaelides Penk, Farhood Pouryoussefi (student, Iran), Harry D. Ruderman, Kiran Lall Shrestha (Nepal), J. M. Stark, M. Vowe (Switzerland), Harry Weingarten, and Brent Young (student).

 Most of the solutions were based on trigonometric arguments (an impressive variety of trigonometric identities). A brillant, purely geometric, solution, due to Gregg Patruno (U.S.A.), appears in Murray Klamkin's International Mathematical Olympiads, 1978-1985, New Mathematical Library, No. 31, MAA (solution to Problem 1, 1985).

