MATH 101
 HOMEWORK 1 SOLUTIONS

1. Find $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}+x-3}{x^{3}+2 x^{2}-x-2}$.

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}+x-3}{x^{3}+2 x^{2}-x-2} & =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+2 x+3\right)}{(x-1)\left(x^{2}+3 x+2\right)} \\
& =\lim _{x \rightarrow 1} \frac{\left(x^{2}+2 x+3\right)}{\left(x^{2}+3 x+2\right)} \\
& =1
\end{aligned}
$$

2. Find $\lim _{x \rightarrow 1} \frac{x^{3}-3 x^{2}+5 x-3}{x^{3}-4 x^{2}+5 x-2}$.

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{3}-3 x^{2}+5 x-3}{x^{3}-4 x^{2}+5 x-2} & =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}-2 x+3\right)}{(x-1)^{2}(x-2)} \\
& =\lim _{x \rightarrow 1} \frac{\left(x^{2}-2 x+3\right)}{(x-1)(x-2)} \\
& =\text { does not exist. }
\end{aligned}
$$

3. Solve the following problems from the book:

- Page 77, Exercises 6, 8, 10.

6) Equation of the line through $(3,3)$ and $(-2,5)$ is $y=\frac{5-3}{-2-3}(x-3)+3=-\frac{2}{5}(x-3)+3$. Or equivalently $2 x+5 y=21$.
7) Equation of line through $(3,1)$ and parallel to $2 x-y=-2$. Rewriting the line $2 x-y=21$ as $y=2 x+2$, we see that its slope is 2 . The line which passes through $(3,1)$ must therefore have slope 2 . Its equation is $y=2(x-3)+1$.
8) Equation of line through $(-2,-3)$ and perpendicular to $3 x-5 y=1$. The slope of the line $3 x-5 y=1$ is $3 / 5$, therefore the slope of a line perpendicular to it is $-5 / 3$. The required equation is $y=(-5 / 3)(x+2)-3$.

- Page 79, Exercises 94, 96, 98, 100.

94) $\cot \left(\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)=\cot \left(-\frac{\pi}{3}\right)=-\frac{1}{\sqrt{3}}$. Here we are using the table on page 51 about the domain and the range of the inverse trigonometric functions.
95) $\sec \left(\tan ^{-1} 1+\csc ^{-1} 1\right)=\sec (\pi / 4+\pi / 2)=\sec (3 \pi / 4)=-\sqrt{2}$.
96) If $\alpha=\sec ^{-1}(y / 5)$, then $\cos \alpha=5 / y$. Then $\tan \alpha= \pm \sqrt{y^{2}-25} / 5$, where the sign is + if $y>0$, and - if $y<0$. This follows from the graph in figure $50-\mathrm{d}$ on page 52 .
97) If $\alpha=\tan ^{-1} x / \sqrt{x^{2}+1}$, then $|\alpha|$ can be put into a right triangle with adjacent side $\sqrt{x^{2}+1}$ and opposite side $|x|$. The hypothenuse becomes $\sqrt{2 x^{2}+1}$, and $\sin \alpha=x / \sqrt{2 x^{2}+1}$.

- Page 81, Exercise 8.

The coordinates of P is given by $P=(a / 2, b / 2)$. The slope of the line through the origin and P is therefore b / a. The slope of the line $A B$ is $-b / a$. We have $O P \perp A B$ when $(b / a)(-b / a)=-1$, or equivalently when $a=b$, since both a and b are positive.

Math 101 Section 2-Ali Sinan Sertöz

