MATH 101
 HOMEWORK 2 SOLUTIONS

p157 Ex-4. Find $f^{\prime}(x)$ using the definition of derivative and then evaluate $f^{\prime}(-3)$, where $f(x)=x+9 / x$.

Solution:
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{[(x+h)+9 /(x+h)]-[x+9 / x]}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+x h-9}{x(x+h)}=$ $1-9 / x^{2}$, so $f^{\prime}(-3)=0$.
p157 Ex-7 Find the first and second derivatives of $y=x^{2}+x+8$.

Solution:

$y^{\prime}=2 x+1, y^{\prime \prime}=2$.
p157 Ex-8 Find the first and second derivatives of $s=5 t^{3}-3 t^{5}$.

Solution:

$$
s^{\prime}=15 t^{2}-15 t^{4}, s^{\prime \prime}=30 t-60 t^{3} .
$$

p157 Ex-9 Find the first and second derivatives of $y=\frac{4 x^{3}}{3}-4$.
Solution:
$y^{\prime}=4 x^{2}, y^{\prime \prime}=8 x$.
p157 Ex-10 Find the first and second derivatives of $y=\frac{x^{3}+7}{x}$.

Solution:

$y^{\prime}=\frac{\left(3 x^{2}\right)(x)-\left(x^{3}+7\right)(1)}{x^{2}}=\frac{2 x^{3}-7}{x^{2}}=2 x-\frac{7}{x^{2}}, y^{\prime \prime}=2+\frac{14}{x^{3}}$.
p169 Ex-1 $s=t^{2}-3 t+2, \quad 0 \leq t \leq 2$.

Solution:

(a) Displacement $=\Delta s=s(2)-s(0)=-2 m . v_{a v}=\frac{\Delta s}{\Delta t}=\frac{-2 m}{2 s e c}=-1 m / s e c$.
(b) $v=s^{\prime}=2 t-3$, speed at the end points $|v(0)|=3 \mathrm{~m} / \mathrm{sec},|v(2)|=1 \mathrm{~m} / \mathrm{sec}$. Acceleration $a=v^{\prime}=2 \mathrm{~m} / \sec ^{2}$, acceleration at the end points $a(0)=2 \mathrm{~m} / \mathrm{sec}^{2}, a(2)=2 \mathrm{~m} / \mathrm{sec}^{2}$.
(c) The body changes direction when v changes direction. For this first v must be zero. $v=2 t-3=0$ when $t=3 / 2$ sec. For $0 \leq t \leq 3 / 2, v$ is negative and for $3 / 2 \leq t \leq 2 v$ is positive. So the body changes direction when $t=3 / 2$ sec.
p169 Ex-2 $s=6 t-t^{2}, \quad 0 \leq t \leq 6$.

Solution:

(a) Displacement $=\Delta s=s(6)-s(0)=0 . v_{a v}=\frac{\Delta s}{\Delta t}=\frac{0}{6 s e c}=0 \mathrm{~m} / \mathrm{sec}$.
(b) $v=s^{\prime}=6-2 t$, speed at the end points $|v(0)|=6 \mathrm{~m} / \mathrm{sec},|v(6)|=6 \mathrm{~m} / \mathrm{sec}$. Acceleration $a=v^{\prime}=-2 m / \sec ^{2}$, acceleration at the end points $a(0)=-2 m / \sec ^{2}, a(6)=-2 m / \sec ^{2}$.
(c) The body changes direction when v changes direction. For this first v must be zero. $v=6-2 t=0$ when $t=3 s e c$. For $0 \leq t \leq 3, v$ is positive and for $3 \leq t \leq 6 v$ is negative. So the body changes direction when $t=3 \mathrm{sec}$.
p169 Ex-3 $s=-t^{3}+3 t^{2}-3 t, \quad 0 \leq t \leq 3$.

Solution:

(a) Displacement $=\Delta s=s(3)-s(0)=-9 m . v_{a v}=\frac{\Delta s}{\Delta t}=\frac{-9 m}{3 s e c}=-3 m / s e c$.
(b) $v=s^{\prime}=-3 t^{2}+6 t-3$, speed at the end points $|v(0)|=3 \mathrm{~m} / \mathrm{sec},|v(3)|=12 \mathrm{~m} / \mathrm{sec}$. Acceleration $a=v^{\prime}=-6 t+6$, acceleration at the end points $a(0)=6 m / \sec ^{2}, a(3)=$ $-12 \mathrm{~m} / \mathrm{sec}^{2}$.
(c) The body changes direction when v changes direction. For this first v must be zero. $v=-3 t^{2}+6 t-3=-3(t-1)^{2}=0$ when $t=1$ sec. For all other values of t the velocity is negative, so the body never changes direction.
p169 Ex-7 The equations for free fall at the surfaces of Mars is $s=1.86 t^{2}$, and on the surface of Jupiter is $s=11.44 t^{2}$. Here s is in meters and t is in seconds. How long does it take a rock falling from rest to reach a velocity of $27.8 \mathrm{~m} / \mathrm{sec}$ on each planet?

Solution:

On Mars $s=1.86 t^{2}, v=3.72 t$. Solving $3.72 t=27.8$ gives $t=7.4$ sec.
On Jupiter $s=11.44 t^{2}, v=22.88 t$. Solving $22.88 t=27.8$ gives $t=1.2$ sec .
p169 Ex-9 On an airless planet a ball is shot upwards with an initial velocity of $15 \mathrm{~m} / \mathrm{sec}$. The ball reached its maximum height 20 sec after launch. The ball's motion is governed by the formula $s=15 t-(1 / 2) g_{s} t^{2}$ where g_{s} is the acceleration of gravity. What is the value of g_{s} on this planet?

Solution:

$s=15 t-(1 / 2) g_{s} t^{2}, v=15-g_{s} t$. When the maximum height is reached the velocity is zero. Solving $v=15-g_{s} t=0$ we get $t=15 / g_{s}$. Therefore $15 / g_{s}=20$ gives $g_{s}=(3 / 4) \mathrm{m} / \mathrm{sec}^{2}$.

Math 101 Section 2-Ali Sinan Sertöz

