MATH 101 HOMEWORK-4 SOLUTIONS

Ali Sinan Sertöz

Page 278, Exercise 26-a. $P=2 x+2 y=36, y=18-x$. When the cylinder is formed $r=x /(2 \pi)$ and $h=y$. The volume of the cylinder then becomes $V=\pi r^{2} h=$ $\left(18 x^{2}-x^{3}\right) /(4 \pi)=V(x)$. Solving $V^{\prime}(x)=3 x(12-x) /(4 \pi)=0$ we get $x=0$ or $x=12$. When $x=0$ we have no cylinder. Since $V^{\prime \prime}(x)=3(6-x) /(2 \pi)$ and $V^{\prime \prime}(12)<0$ we have a maximum value at $x=12, y=6$.

Page 278, Exercise 26-b. In this case $V(x)=\pi x^{2}(18-x)$. Solving $V^{\prime}(x)=3 \pi x(12-x)=$ 0 we get $x=0$ or $x=12$. As before $x=0$ gives no cylinder. Since $V^{\prime \prime}(x)=6 \pi(6-x)$ and $V^{\prime \prime}(12)<0$, we have a maximum value at $x=12, y=6$.

Page 278, Exercise 27. Here $h^{2}+r^{2}=3$. The volume is $V=(\pi / 3) r^{2} h=(\pi / 3)\left(3-h^{2}\right) h$ for $0<h<\sqrt{3}$. $V^{\prime}(h)=\pi\left(1-h^{2}\right)=0$ gives $h=1$. Since $V^{\prime \prime}(1)<0$ we have a maximum value at $h=1$. Then $r=\sqrt{2}$ and $V=(2 \pi / 3)$.

Page 279, Exercise 32. Let x be the distance from the point on the shoreline nearest Jane's boat to the point where she lands her boat. Then she needs to row $\sqrt{4+x^{2}}$ miles at 2 mph and walk $6-x$ miles at 5 mph . The total amount of time to reach the village is $f(x)=\sqrt{4+x^{2}} / 2+(6-x) / 5$ hours, $0 \leq x \leq 6$. Solving for $f^{\prime}(x)=0$ in this domain we find $x=4 / \sqrt{21}$. Checking the end points and this critical value we find $f(0)=2.2$, $f(4 / \sqrt{21})=2.12 . ., f(6)=3.16 \ldots$. Hence for the shortest travel time she should land her boat $4 / \sqrt{21}$ miles down the shoreline from the point nearest her boat.

Page 279, Exercise 33. Let h denote the height of the beam from the ground when it is leaning on the wall and x denote the distance of the other end of the beam from the 8 feet wall. Then we have $8 / x=h /(x+27)$, giving us $h=8+\frac{216}{x}$. The length of the beam is then $L(x)=\sqrt{h^{2}+(x+27)^{2}}=\sqrt{\left(8+\frac{216}{x}\right)^{2}+(x+27)^{2}}$ with $x>0$. Note that $L(x)$ is minimized when $f(x)=\left(8+\frac{216}{x}\right)^{2}+(x+27)^{2}$ is minimized. $f^{\prime}(x)=2\left(8+\frac{216}{x}\right)\left(-\frac{216}{x^{2}}\right)+2(x+27)=$ $\frac{2}{x^{3}}\left(x^{4}+27 x^{3}-1728 x-46656\right)=\frac{2}{x^{3}}(x-12)(x+27)\left(x^{2}+12 x+144\right)$. Solving for $f^{\prime}(x)=0$ in the domain we find $x=12$. Since $f(x)$ becomes infinite as x approaches 0 and ∞, and since this is the only critical point, it should give the global minimum value. Hence the shortest possible length for the beam is $L(12)=\sqrt{f(12)}=\sqrt{2197}=46.87$.. feet.

Page 307, Exercise 44. $A(x)=\frac{1}{2}(2 x)\left(27-x^{2}\right)=27 x-x^{3}, 0 \leq x \leq 3 \sqrt{3}$.
$A^{\prime}(x)=27-3 x^{2}=0 \Rightarrow x=3 . A^{\prime \prime}(x)=-6 x . A^{\prime \prime}(3)<0 \Rightarrow A(3)=54$ is the maximal value.

