MATH 101 HOMEWORK-4 SOLUTIONS

Ali Sinan Sertöz

Page 278, Exercise 26-a. P = 2x + 2y = 36, y = 18 - x. When the cylinder is formed $r = x/(2\pi)$ and h = y. The volume of the cylinder then becomes $V = \pi r^2 h = (18x^2 - x^3)/(4\pi) = V(x)$. Solving $V'(x) = 3x(12 - x)/(4\pi) = 0$ we get x = 0 or x = 12. When x = 0 we have no cylinder. Since $V''(x) = 3(6 - x)/(2\pi)$ and V''(12) < 0 we have a maximum value at x = 12, y = 6.

Page 278, Exercise 26-b. In this case $V(x) = \pi x^2(18-x)$. Solving $V'(x) = 3\pi x(12-x) = 0$ we get x = 0 or x = 12. As before x = 0 gives no cylinder. Since $V''(x) = 6\pi(6-x)$ and V''(12) < 0, we have a maximum value at x = 12, y = 6.

Page 278, Exercise 27. Here $h^2 + r^2 = 3$. The volume is $V = (\pi/3)r^2h = (\pi/3)(3 - h^2)h$ for $0 < h < \sqrt{3}$. $V'(h) = \pi(1 - h^2) = 0$ gives h = 1. Since V''(1) < 0 we have a maximum value at h = 1. Then $r = \sqrt{2}$ and $V = (2\pi/3)$.

Page 279, Exercise 32. Let x be the distance from the point on the shoreline nearest Jane's boat to the point where she lands her boat. Then she needs to row $\sqrt{4 + x^2}$ miles at 2 mph and walk 6 - x miles at 5 mph. The total amount of time to reach the village is $f(x) = \sqrt{4 + x^2}/2 + (6 - x)/5$ hours, $0 \le x \le 6$. Solving for f'(x) = 0 in this domain we find $x = 4/\sqrt{21}$. Checking the end points and this critical value we find f(0) = 2.2, $f(4/\sqrt{21}) = 2.12.., f(6) = 3.16...$ Hence for the shortest travel time she should land her boat $4/\sqrt{21}$ miles down the shoreline from the point nearest her boat.

Page 279, Exercise 33. Let *h* denote the height of the beam from the ground when it is leaning on the wall and *x* denote the distance of the other end of the beam from the 8 feet wall. Then we have 8/x = h/(x+27), giving us $h = 8 + \frac{216}{x}$. The length of the beam is then $L(x) = \sqrt{h^2 + (x+27)^2} = \sqrt{(8 + \frac{216}{x})^2 + (x+27)^2}$ with x > 0. Note that L(x) is minimized when $f(x) = (8 + \frac{216}{x})^2 + (x+27)^2$ is minimized. $f'(x) = 2(8 + \frac{216}{x})(-\frac{216}{x^2}) + 2(x+27) = \frac{2}{x^3}(x^4 + 27x^3 - 1728x - 46656) = \frac{2}{x^3}(x-12)(x+27)(x^2 + 12x + 144)$. Solving for f'(x) = 0 in the domain we find x = 12. Since f(x) becomes infinite as *x* approaches 0 and ∞ , and since this is the only critical point, it should give the global minimum value. Hence the shortest possible length for the beam is $L(12) = \sqrt{f(12)} = \sqrt{2197} = 46.87$.

Page 307, Exercise 44. $A(x) = \frac{1}{2}(2x)(27 - x^2) = 27x - x^3, 0 \le x \le 3\sqrt{3}$. $A'(x) = 27 - 3x^2 = 0 \Rightarrow x = 3$. A''(x) = -6x. $A''(3) < 0 \Rightarrow A(3) = 54$ is the maximal value.