Math 101 Calculus - Final Exam - Solutions

Q-1) Let $f(x)=x^{x}, x>0$.
i) Find $\lim _{x \rightarrow 0+} f(x)$ and $\lim _{x \rightarrow \infty} f(x)$.
ii) Determine the intervals where $f(x)$ increases/decreases.
iii) Determine the concavity of the graph of $y=f(x)$.
iv) Find the points where $f(x)$ takes minimum and maximum values, if any.
v) Plot the graph of $y=f(x)$.

Solution:

i) Let $\lim _{x \rightarrow 0+} x^{x}=A$. Then,
$\ln A=\lim _{x \rightarrow 0+} x \ln x=\lim _{x \rightarrow 0+} \frac{\ln x}{1 / x}=\lim _{x \rightarrow 0+} \frac{1 / x}{-1 / x^{2}}=-\lim _{x \rightarrow 0+} x=0$.
Therefore $\lim _{x \rightarrow 0+} x^{x}=1$. On the other hand clearly $\lim _{x \rightarrow \infty} x^{x}=\infty$.
ii) $f^{\prime}(x)=\left(x^{x}\right)^{\prime}=\left(e^{x \ln x}\right)^{\prime}=\left(e^{x \ln x}\right)(\ln x+1)=\left(x^{x}\right)(\ln x+1)=0$ when $x=1 / e$. Since $\ln x$ is an increasing function, $f^{\prime}(x)<0$ for $x<1 / e$, and $f^{\prime}(x)>0$ for $x>1 / e$.
iii) $f^{\prime \prime}(x)=\left(x^{x}(\ln x+1)\right)^{\prime}=x^{x}(\ln x+1)^{2}+x^{x}(1 / x)>0$ for all $x>0$, so the graph is always concave up.
iv) f has a global minimum at $x=1 / e$. No global max exists.

Q-2) City A is 8 km away from a railroad which is in the form of a straight line passing through city B. City B is 9 km away from the point D which is the nearest point on the railroad to city A. As the transportation minister you want to build a highway from city A to a point C on the railroad. The cost of transportation by the railroad is 3 million TL per km. Cost of transportation along the new highway will be 5 million TL per km . You want to choose the point C so that the total cost of transportation from city A to city B , along the route $\mathrm{AC}+\mathrm{CB}$, will be minimum. Decide where the point C should be.

Solution:

Let $f(x)$ denote the total cost of transportation when point C is $x \mathrm{~km}$ away from point D .
$f(x)=5 \sqrt{64+x^{2}}+3(9-x), 0 \leq x \leq 9 . f^{\prime}(x)=\frac{5 x}{\sqrt{64+x^{2}}}-3=0$ when $5 x=3 \sqrt{64+x^{2}}$, or equivalently when $x=6$ for x in the domain.

Checking the values of $f(x)$ at the critical and at the end points:
$f(0)=67$
$f(9)=5 \sqrt{145}>5 \sqrt{144}=60$
$f(6)=59$.
So the minimum occurs when C is 6 km from point D .

Q-3) Evaluate the following two integrals:
i) $\int x^{2} \arctan x d x$.
ii) $\int x^{3} \sqrt{1+x^{2}} d x$.

Solution:

i) First letting $u=\arctan x$ and $d v=x^{2} d x$ and applying by-parts we get $\int x^{2} \arctan x d x=$ $\frac{1}{3} x^{3} \arctan x-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x$.

Now $\frac{x^{3}}{1+x^{2}}=x-\frac{x}{1+x^{2}} \Rightarrow \int \frac{x^{3}}{1+x^{2}} d x=\int x d x-\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x=\frac{1}{2} x^{2}-\frac{1}{2} \ln \left(1+x^{2}\right)+C$.
Putting these together we find $\int x^{2} \arctan x d x=\frac{1}{3} x^{3} \arctan x-\frac{1}{6} x^{2}+\frac{1}{6} \ln \left(1+x^{2}\right)+C$.
ii) First put $x=\tan \theta$ to obtain $I=\int x^{3} \sqrt{1+x^{2}} d x=\int \frac{\sin ^{3} \theta}{\cos ^{6} \theta} d \theta=\int \frac{\left(1-\cos ^{2} \theta\right) \sin \theta}{\cos ^{6} \theta} d \theta$

Now substitute $u=\cos \theta$ to get $I=\int\left(u^{-4}-u^{-6}\right) d u=-\frac{1}{3} u^{-3}+\frac{1}{5} u^{-5}+C=-\frac{1}{3} \sec ^{3} \theta+$ $\frac{1}{5} \sec ^{5} \theta+C$.

The substitution $x=\tan \theta$ means that θ is in a right triangle with the leg opposite to θ is x, and the leg adjacent to θ is 1 . Then the hypothenuse is $\sqrt{1+x^{2}}$ and $\sec \theta=\sqrt{1+x^{2}}$. This gives $I=-\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+\frac{1}{5}\left(1+x^{2}\right)^{5 / 2}+C$.

Another way of doing this is as follows: Let $u=x^{2}, d v=x \sqrt{1+x^{2}}$ and apply by-parts to obtain $\int x^{3} \sqrt{1+x^{2}} d x=\frac{x^{2}}{3}\left(1+x^{2}\right)^{3 / 2}-\frac{2}{3} \int x\left(1+x^{2}\right)^{3 / 2} d x$. For the second integral use the substitution $u=1+x^{2}$ to get $\int x\left(1+x^{2}\right)^{3 / 2} d x=\frac{1}{2} \int u^{3 / 2} d u=\frac{1}{5} u^{5 / 2}+C=\frac{1}{5}\left(1+x^{2}\right)^{5 / 2}+C$.
Putting these together we get $\int x^{3} \sqrt{1+x^{2}} d x=\frac{x^{2}}{3}\left(1+x^{2}\right)^{3 / 2}-\frac{2}{15}\left(1+x^{2}\right)^{5 / 2}+C$.

Q-4) Evaluate the integral $\int \frac{4 x^{3}-x^{2}+2 x-1}{x(x-1)\left(x^{2}+1\right)} d x$.

Solution:

$$
\begin{aligned}
\frac{4 x^{3}-x^{2}+2 x-1}{x(x-1)\left(x^{2}+1\right)} & =\frac{A}{x}+\frac{B}{x-1}+\frac{C x+D}{x^{2}+1} \\
& =\frac{1}{x}+\frac{2}{x-1}+\frac{x+1}{x^{2}+1} \\
& =\frac{1}{x}+\frac{2}{x-1}+\left(\frac{1}{2} \frac{2 x}{x^{2}+1}+\frac{1}{x^{2}+1}\right)
\end{aligned}
$$

This then immediately gives

$$
\int \frac{4 x^{3}-x^{2}+2 x-1}{x(x-1)\left(x^{2}+1\right)} d x=\ln |x|+2 \ln |x-1|+\frac{1}{2} \ln \left(x^{2}+1\right)+\arctan x+C .
$$

Q-5) We have two differentiable functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$. The table below lists the values of $f, f^{\prime}, g, g^{\prime}$ at various points. Consider the limit

$$
\lim _{x \rightarrow 0} \frac{f(g(x))}{g(f(x))}
$$

Using the table below can you calculate this limit? If yes, find the limit. If not, explain what else you need to find the limit.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
0	4	2	23	67
1	5	3	29	71
2	0	4	31	73
3	1	5	37	79
4	2	0	41	83
5	3	1	43	89

Solution:

First note that $f(g(0))=f(2)=0$ and $g(f(0))=g(4)=0$, so the limit is in an indeterminate form. We can apply L'Hopital's rule to calculate this limit as follows:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f(g(x))}{g(f(x))} & =\lim _{x \rightarrow 0} \frac{f^{\prime}(g(x)) g^{\prime}(x)}{g^{\prime}(f(x)) f^{\prime}(x)} \\
& =\frac{f^{\prime}(g(0)) g^{\prime}(0)}{g^{\prime}(f(0)) f^{\prime}(0)} \\
& =\frac{f^{\prime}(2) \cdot 67}{g^{\prime}(4) \cdot 23} \\
& =\frac{31 \cdot 67}{83 \cdot 23}=\frac{2077}{1909} .
\end{aligned}
$$

