Math 101 Calculus - Midterm Exam II - SOLUTIONS

Q-1) Does the function $f(x)=\frac{x^{2}-1}{x^{4}+1}$ have global minimum and maximum? If so, find at which points these extreme values are attained. If not, explain why?

Solution:

First observe that $\lim _{x \rightarrow \pm \infty} f(x)=0$ and that the function takes both positive and negative values, so there is a global minimum and a global maximum.
$f^{\prime}(x)=\frac{-2 x^{5}+4 x^{3}+2 x}{\left(x^{4}+1\right)^{2}}=0$ when $x=0, \pm \sqrt{1+\sqrt{2}}$.
$f(\sqrt{1+\sqrt{2}})=f(-\sqrt{1+\sqrt{2}})>0$ and $f(0)=-1$.
Hence the global maximum occurs at $x= \pm \sqrt{1+\sqrt{2}}$ and the global minimum occurs at $x=0$.

Q-2) Find the area enclosed by the curve

$$
f(x)=\frac{x^{2}}{\sqrt{x^{3}-1}} \frac{\sin ^{3} \sqrt{x^{3}-1}}{\cos ^{5} \sqrt{x^{3}-1}}
$$

and the x-axis, between the points $x_{1}=\left(1+\frac{\pi^{2}}{16}\right)^{1 / 3} \approx 1.17$ and $x_{2}=\left(1+\frac{\pi^{2}}{9}\right)^{1 / 3} \approx 1.27$.

Solution:

Area $=\int_{x_{1}}^{x_{2}} f(x) d x=\int_{x_{1}}^{x_{2}} \frac{x^{2}}{\sqrt{x^{3}-1}} \tan \sqrt{x^{3}-1} \sec \sqrt{x^{3}-1} d x$.
Let $u=\tan \sqrt{x^{3}-1}$. Then $d u=\frac{3}{2} \frac{x^{2}}{\sqrt{x^{3}-1}} \sec ^{2} \sqrt{x^{3}-1} d x$, and $x=x_{1} \Rightarrow u=\tan \pi / 4=1$, $x=x_{2} \Rightarrow u=\tan \pi / 3=\sqrt{3}$.

Now Area $=\frac{2}{3} \int_{1}^{\sqrt{3}} u^{3} d u=\frac{2}{3}\left(\left.\frac{1}{4} u^{4}\right|_{1} ^{\sqrt{3}}\right)=\frac{4}{3}$.

Q-3) Revolve the curve $f(x)=(\cos x)^{1 / 2}(1+\sin x)^{1 / 4}$ around the x -axis between the points $x_{1}=0$ and $x_{2}=\pi / 2$, and calculate the volume so obtained.

Solution:

Volume $=\pi \int_{0}^{\pi / 2} f(x)^{2} d x=\pi \int_{0}^{\pi / 2} \cos x \sqrt{1+\sin x} d x$.
Let $u=1+\sin x$. Then $d u=\cos x$ and $x=0 \Rightarrow u=1, x=\pi / 2 \Rightarrow u=2$.
Then Volume $=\pi \int_{1}^{2} u^{1 / 2} d u=\left.\frac{2 \pi}{3} u^{3 / 2}\right|_{1} ^{2}=\frac{2 \pi}{3}\left(2^{3 / 2}-1\right) \approx 3.829$.

Q-4) Revolve around y-axis the area bounded by the curve $f(x)=x \cos ^{2} x^{3}$ and the x -axis, between the points $x_{1}=0$ and $x_{2}=\frac{\pi^{1 / 3}}{2}$. Find the volume so obtained.

Solution:

Volume $=2 \pi \int_{x_{1}}^{x_{2}} x f(x) d x=2 \pi \int_{x_{1}}^{x_{2}} x^{2} \cos ^{2} x^{3} d x$.
Let $u=x^{3}$. Then $d u=3 x^{2} d x$, and $x=0 \Rightarrow u=0, x=\left(\pi^{1 / 3}\right) / 2 \Rightarrow u=\pi / 8$.
Volume $=\frac{2 \pi}{3} \int_{0}^{\pi / 8} \cos ^{2} u d u=\frac{2 \pi}{3} \int_{0}^{\pi / 8} \frac{1+\cos 2 u}{2} d u=\frac{2 \pi}{3}\left(\frac{1}{2} u+\left.\frac{1}{4} \sin 2 u\right|_{0} ^{\pi / 8}\right)$
$=\frac{\pi^{2}}{24}+\frac{\pi}{6 \sqrt{2}} \approx 0.781$.

Q-5) Find the length of the curve given by the parametrization $x(t)=t^{4}, y(t)=4 t^{7}-\frac{t}{7}$, between $t=0$ and $t=1$.

Solution:

$\dot{x}=4 t^{3}, \dot{y}=(4 \cdot 7) t^{6}-\frac{1}{7}$
$\dot{x}^{2}+\dot{y}^{2}=16 t^{6}+(4 \cdot 7)^{2} t^{12}-8 t^{6}+\left(\frac{1}{7}\right)^{2}=(4 \cdot 7)^{2} t^{12}+8 t^{6}+\left(\frac{1}{7}\right)^{2}=\left(28 t^{6}+\frac{1}{7}\right)^{2}$.
Hence Length $=\int_{0}^{1} \sqrt{\dot{x}^{2}+\dot{y}^{2}} d t=\int_{0}^{1}\left(28 t^{6}+\frac{1}{7}\right) d t=\left(4 t^{7}+\left.\frac{t}{7}\right|_{0} ^{1}\right)=\frac{29}{7}$.

