Math 101
Final Exam
Solutions

1) Let f and g be two differentiable functions defined on \mathbb{R} such that

$$
f(0)=1, \quad f(1)=1, \quad g(0)=1, \quad \text { and } \quad g(1)=0
$$

and

$$
f^{\prime}(0)=5, \quad f^{\prime}(1)=7, \quad g^{\prime}(0)=13, \quad \text { and } \quad g^{\prime}(1)=11 .
$$

Define

$$
\phi(x)=(f \circ g)(x) \quad \text { and } \quad \rho(x)=\int_{0}^{f(x)}\left(g^{\prime} \circ f\right)(u) d u .
$$

Find the following:
a) $\phi^{\prime}(0)=$?

Solution: By Chain Rule, $\phi^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$. Hence

$$
\phi^{\prime}(0)=f^{\prime}(g(0)) g^{\prime}(0)=f^{\prime}(1) g^{\prime}(0)=7 \cdot 13=91
$$

b) $\rho^{\prime}(1)=$?

Solution: Define

$$
\psi(w)=\int_{0}^{w}\left(g^{\prime} \circ f\right)(u) d u
$$

Then we have

$$
\rho(x)=(\psi \circ f)(x),
$$

by chain rule we have

$$
\rho^{\prime}(x)=\psi^{\prime}(f(x)) f^{\prime}(x),
$$

and by Fundamental Theorem of Calculus Part 1 we have

$$
\psi^{\prime}(w)=\left(g^{\prime} \circ f\right)(w)
$$

Hence we have

$$
\rho^{\prime}(x)=\left(g^{\prime} \circ f\right)(f(x)) f^{\prime}(x)
$$

In particular we have

$$
\rho^{\prime}(1)=\left(g^{\prime} \circ f\right)(f(1)) f^{\prime}(1)=g^{\prime}(1) f^{\prime}(1)=11 \cdot 7=77 .
$$

2) Evaluate the integral

$$
\int \frac{d x}{\left(x^{2}+x+1\right)^{2}}
$$

Solution: Define $w=\frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right)$. Then

$$
\begin{aligned}
& \int \frac{d x}{\left(x^{2}+x+1\right)^{2}}=\int \frac{d x}{\left(x^{2}+x+\frac{1}{4}+\frac{3}{4}\right)^{2}}=\int \frac{d x}{\left(\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right)^{2}}= \\
= & \int \frac{\frac{\sqrt{3}}{2}}{\left(\frac{3}{4} w^{2}+\frac{3}{4}\right)^{2}} d w=\int \frac{\frac{\sqrt{3}}{2}}{\frac{9}{16}\left(w^{2}+1\right)^{2}} d w=\frac{8}{3 \sqrt{3}} \int \frac{d w}{\left(w^{2}+1\right)^{2}}=(*)
\end{aligned}
$$

Define $\theta=\arctan (w)$. Then

$$
\begin{gathered}
(*)=\frac{8}{3 \sqrt{3}} \int \frac{\sec ^{2}(\theta)}{\sec ^{4}(\theta)} d \theta=\frac{8}{3 \sqrt{3}} \int \cos ^{2}(\theta) d \theta=\frac{8}{3 \sqrt{3}} \int \frac{1+\cos (2 \theta)}{2} d \theta= \\
=\frac{8}{3 \sqrt{3}}\left(\frac{\theta}{2}+\frac{\sin (2 \theta)}{4}\right)+C=\frac{8}{3 \sqrt{3}}\left(\frac{\theta}{2}+\frac{\sin (\theta) \cos (\theta)}{2}\right)+C= \\
=\frac{8}{3 \sqrt{3}}\left(\frac{\arctan (w)}{2}+\frac{\left(\frac{w}{\sqrt{w^{2}+1}}\right)\left(\frac{1}{\sqrt{w^{2}+1}}\right)}{2}\right)+C=\frac{4}{3 \sqrt{3}} \arctan (w)+\frac{4}{3 \sqrt{3}} \frac{w}{w^{2}+1}+C= \\
=\frac{4}{3 \sqrt{3}} \arctan \left(\frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right)\right)+\frac{2 x+1}{3\left(x^{2}+x+1\right)}+C
\end{gathered}
$$

3) Evaluate the integral

$$
\int \frac{5 x^{3}+7 x^{2}-25 x+39}{x^{4}-x^{3}-29 x^{2}-x-30} d x
$$

Solution: First notice

$$
x^{4}-x^{3}-29 x^{2}-x-30=(x+5)(x-6)\left(x^{2}+1\right)
$$

Hence for some A, B, C, and D numbers we have

$$
\frac{5 x^{3}+7 x^{2}-25 x+39}{x^{4}-x^{3}-29 x^{2}-x-30}=\frac{5 x^{3}+7 x^{2}-25 x+39}{(x+5)(x-6)\left(x^{2}+1\right)}=\frac{A}{x+5}+\frac{B}{x-6}+\frac{C x+D}{x^{2}+1} .
$$

Multiply both sides of the equation by $(x+5)(x-6)\left(x^{2}+1\right)$ we get
$5 x^{3}+7 x^{2}-25 x+39=A(x-6)\left(x^{2}+1\right)+B(x+5)\left(x^{2}+1\right)+(C x+D)(x+5)(x-6)$
Put $x=-5$, we get $-286=-286 A$. Hence $A=1$.
Put $x=6$, we get $1221=407 B$. Hence $B=3$.
Put $x=0$, we get $39=-6+15-30 D$. Hence $D=-1$.
Put $x=1$, we get $5+7-25+39=-10+36-30(C-1)$. Hence $C=1$
Hence

$$
\frac{5 x^{3}+7 x^{2}-25 x+39}{x^{4}-x^{3}-29 x^{2}-x-30}=\frac{1}{x+5}+\frac{3}{x-6}+\frac{x-1}{x^{2}+1} .
$$

Therefore

$$
\begin{gathered}
\int \frac{5 x^{3}+7 x^{2}-25 x+39}{x^{4}-x^{3}-29 x^{2}-x-30} d x=\int\left(\frac{1}{x+5}+\frac{3}{x-6}+\frac{x-1}{x^{2}+1}\right)=d x \\
=\int\left(\frac{1}{x+5}+\frac{3}{x-6}+\frac{x}{x^{2}+1}-\frac{1}{x^{2}+1}\right) d x= \\
=\ln |x+5|+3 \ln |x-6|+\frac{1}{2} \ln \left(x^{2}+1\right)-\arctan (x)+C
\end{gathered}
$$

4) Find the volume of the largest right circular cylinder that can be inscribed in a sphere of radius R.

Solution: Assume that x denotes the radius of the inscribed right circular cylinder. Then $0 \leq x \leq R$ and the height of the right circular cylinder is $2 \sqrt{R^{2}-x^{2}}$. Hence we want to maximize the following volume function:

$$
V(x)=2 \pi x^{2} \sqrt{R^{2}-x^{2}} \quad \text { for } \quad 0 \leq x \leq R
$$

Note that V is a continuous function on a closed interval $[0, R]$. Hence we can use the method for finding absolute extrema of a continuous function on a closed interval. First note that

$$
V^{\prime}(x)=2 \pi\left(2 x \sqrt{R^{2}-x^{2}}-\frac{x^{3}}{\sqrt{R^{2}-x^{2}}}\right)=\frac{2 \pi\left(2 R^{2} x-3 x^{3}\right)}{\sqrt{R^{2}-x^{2}}}
$$

On the interval $(0, R)$ the function V^{\prime} is defined everywhere and $V^{\prime}(x)$ is equal to 0 only when $x=\frac{R \sqrt{2}}{\sqrt{3}}$. Hence the only critical point of V is $x=\frac{R \sqrt{2}}{\sqrt{3}}$. Now $V(0)=0$, $V(R)=0$. Hence the maximum volume is given by the following value of V

$$
V\left(\frac{R \sqrt{2}}{\sqrt{3}}\right)=\frac{4 \pi R^{3}}{3 \sqrt{3}}
$$

