Math 101 Spring 2009 Midterm 2 Solutions

1) Find the limit

$$
\lim _{x \rightarrow 0} \frac{1}{x^{4}} \int_{0}^{x} \tan ^{3}(u) d u
$$

Solution: We have

$$
\lim _{x \rightarrow 0} \frac{1}{x^{4}} \int_{0}^{x} \tan ^{3}(u) d u=\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \tan ^{3}(u) d u}{x^{4}}=(*)
$$

We have a indeterminate form of type $\frac{0}{0}$. Let's try applying L'Hopital's Rule then by Fundamental Theorem of Calculus Part 1 we get:

$$
\begin{aligned}
(*)= & \lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(\int_{0}^{x} \tan ^{3}(u) d u\right)}{\frac{d}{d x}\left(x^{4}\right)}=\lim _{x \rightarrow 0} \frac{\tan ^{3}(x)}{4 x^{3}}=\lim _{x \rightarrow 0} \frac{1}{4}\left(\frac{\sin (x)}{x}\right)^{3} \frac{1}{\cos ^{3}(x)}= \\
& =\left(\lim _{x \rightarrow 0} \frac{1}{4}\right)\left(\lim _{x \rightarrow 0} \frac{\sin (x)}{x}\right)^{3}\left(\lim _{x \rightarrow 0} \frac{1}{\cos ^{3}(x)}\right)=\frac{1}{4} \cdot 1^{3} \cdot \frac{1}{1^{3}}=\frac{1}{4}
\end{aligned}
$$

Since the above calculation shows that the limit after $\left({ }^{*}\right)$ exists, it was possible to apply L'Hopital's Rule at that stage.
2) If they exist find the possible maximal and minimal surface area of a right circular cylinder whose volume is 54π cubic centimeters. (Note: Assume that the surface area includes the area of the circular wall and area of both of the circular ends.)

Solution: We have:
(Volume of the cylinder) $=V=\pi r^{2} h=54 \pi$,
(Surface area of the cylinder) $=S=2 \pi r h+2 \pi r^{2}$.
From the first equation we get $h=\frac{54}{r^{2}}$. Hence

$$
S(r)=2 \pi r h+2 \pi r^{2} h=2 \pi\left(r h+r^{2}\right)=2 \pi\left(r \frac{54}{r^{2}}+r^{2}\right)=2 \pi\left(\frac{54}{r}+r^{2}\right)
$$

for r in $(0, \infty)$. We have

$$
S^{\prime}(r)=2 \pi\left(\frac{-54}{r^{2}}+2 r\right)=2 \pi\left(\frac{2 r^{3}-54}{r^{2}}\right)
$$

Hence $S^{\prime}(r)$ is 0 if an only if $r=3$ and $S^{\prime}(r)$ is continuous on the domain of S. Hence we have

Interval	S^{\prime}	S
$(0,3)$	-	S is decreasing on $(0,3]$.
3	0	$S(3)=54 \pi$.
$(3, \infty)$	+	S is increasing on $[3, \infty)$.

By considering the above table we can say that S has no absolute maximum value and say that the absolute minimum value of S is 54π.
3) Evaluate the integral

$$
\int\left(\sin \left(x^{2}\right)+x^{2} \sin \left(x^{2}\right)+\left(\ln \left(1+x^{2}\right)\right)^{2}\right) \frac{x}{1+x^{2}} d x
$$

Solution: We have

$$
\begin{aligned}
& \int\left(\sin \left(x^{2}\right)+x^{2} \sin \left(x^{2}\right)+\left(\ln \left(1+x^{2}\right)\right)^{2}\right) \frac{x}{1+x^{2}} d x= \\
& =\underbrace{\int \sin \left(x^{2}\right) x d x}_{A}+\underbrace{\int\left(\ln \left(1+x^{2}\right)\right)^{2} \frac{x}{1+x^{2}} d x}_{B}=(* *)
\end{aligned}
$$

Assuming $u=x^{2}$ we have $d u=2 x d x$ and $\frac{1}{2} d u=x d x$

$$
A=\int \sin \left(x^{2}\right) x d x=\frac{1}{2} \int \sin (u) d u=-\frac{1}{2} \cos (u)+C=-\frac{1}{2} \cos \left(x^{2}\right)+C
$$

Assuming $u=\ln \left(1+x^{2}\right)$ we have $d u=\frac{2 x}{1+x^{2}} d x$ and $\frac{1}{2} d u=\frac{x}{1+x^{2}} d x$

$$
B=\int\left(\ln \left(1+x^{2}\right)\right)^{2} \frac{x}{1+x^{2}} d x=\frac{1}{2} \int u^{2} d u=\frac{u^{3}}{6}+C=\frac{\left(\ln \left(1+x^{2}\right)\right)^{3}}{6}+C
$$

Hence

$$
(* *)=A+B=-\frac{1}{2} \cos \left(x^{2}\right)+\frac{\left(\ln \left(1+x^{2}\right)\right)^{3}}{6}+C
$$

4) The finite region bounded by the curves $y=x^{2}$ and $y=x^{3}$ in the the first quadrant is revolved about the y-axis to generate a solid. Find the volume of this solid.

Solution: We have

$$
\begin{gathered}
\text { (Volume of the solid) }=\int_{0}^{1} \pi\left((\sqrt[3]{y})^{2}-(\sqrt{y})^{2}\right) d y==\pi \int_{0}^{1}\left(y^{\frac{2}{3}}-y\right) d y= \\
=\pi\left(\frac{3}{5} y^{\frac{5}{3}}-\left.\frac{y^{2}}{2}\right|_{0} ^{1}\right)=\pi\left(\left(\frac{3}{5}-\frac{1}{2}\right)-0\right)=\frac{\pi}{10}
\end{gathered}
$$

