Bilkent University

Quiz \# 8

Math 101-Section 09 Calculus I
19 November 2015, Thursday

Department of Mathematics

Instructor: Ali Sinan Sertöz

YOUR NAME:

In this quiz you can use only pencils and erasers.

Show your work in detail, unless only an answer is required. Correct answer without proper explanation does not receive any partial credits.
Q-1) Let $g(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown.
(a) At what values of x do the local maximum and local minimum values of g occur?
(b) Where does g attain its absolute maximum value?
(c) On what intervals is g concave downward?
(d) Sketch the graph of g.

Answer: \quad (a) By FTC1, $g^{\prime}(x)=f(x)$. So $g^{\prime}(x)=f(x)=0$ at $x=1,3,5,7$, and $9 . g$ has local maxima at $x=1$ and 5 (since $f=g^{\prime}$ changes from positive to negative there) and local minima at $x=3$ and 7 . There is no local maximum or minimum at $x=9$, since f is not defined for $x>9$.
(b) We can see from the graph that $\left|\int_{0}^{1} f d t\right|<\left|\int_{1}^{3} f d t\right|<\left|\int_{3}^{5} f d t\right|<\left|\int_{5}^{7} f d t\right|<\left|\int_{7}^{9} f d t\right|$. So $g(1)=\left|\int_{0}^{1} f d t\right|$, $g(5)=\int_{0}^{5} f d t=g(1)-\left|\int_{1}^{3} f d t\right|+\left|\int_{3}^{5} f d t\right|$, and $g(9)=\int_{0}^{9} f d t=g(5)-\left|\int_{5}^{7} f d t\right|+\left|\int_{7}^{9} f d t\right|$. Thus, $g(1)<g(5)<g(9)$, and so the absolute maximum of $g(x)$ occurs at $x=9$.
(c) g is concave downward on those intervals where $g^{\prime \prime}<0$. But $g^{\prime}(x)=f(x)$, so $g^{\prime \prime}(x)=f^{\prime}(x)$, which is negative on (approximately) $\left(\frac{1}{2}, 2\right),(4,6)$ and $(8,9)$. So g is concave downward on these intervals.

