Bilkent University
Quiz \# 12
Math 101-Section 09 Calculus I
17 December 2015, Tuesday
Department of Mathematics
Instructor: Ali Sinan Sertöz

YOUR NAME:

In this quiz you can use only pencils and erasers.
If the given integral formula is correct write \mathbf{T} inside the box on it's right. If the formula is wrong write \mathbf{F} in that box and write the correct formula below in the space provided.

Solution: Simply differentiate both sides to check if they are equal!

$\int\left(2 x^{2}+1\right) e^{x^{2}} d x=2 x e^{x^{2}}+C$	F
$\int\left(2 x^{2}+1\right) e^{x^{2}} d x=x e^{x^{2}}+C$	
$\int_{0}^{x} \sqrt{9-t^{2}} d t=\frac{9}{2} \arcsin \frac{x}{2}+\frac{x}{3} \sqrt{9-x^{2}}+C$	F
$\int_{0}^{x} \sqrt{9-t^{2}} d t=\frac{9}{2} \arcsin \frac{x}{\mathbf{3}}+\frac{x}{\mathbf{2}} \sqrt{9-x^{2}}$	
$\int x \arctan x d x=\frac{x^{2}+1}{2} \arctan x-\frac{x}{2}+C$	T
$\int x \arctan x d x=$	
$\int \frac{d x}{x \sqrt{14 x-x^{2}}}=\frac{\sqrt{14 x-x^{2}}}{7 x}+C$	F
$\int \frac{d x}{x \sqrt{14 x-x^{2}}}=-\frac{\sqrt{14 x-x^{2}}}{7 x}+C$	

