Quiz \# 1
Math 101-Section 011 Calculus I
6 October 2016, Thursday
Instructor: Ali Sinan Sertöz
Solution Key
Bilkent University
Your Name: \qquad

Student ID:
Your Department: ...
Show your work in detail. Correct answers without justification are never graded.

Q-1) Using the above graph, find a $\delta>0$ such that whenever we have $|x-36|<\delta$, it is guaranteed that we will have $|f(x)-7|<1$. Explain how you found your δ. (5 points)

Answer: We solve this from the figure. Every x in the open interval $(30,38)$ satisfies the inequality $|f(x)-7|<1$. Since we want a symmetric open interval around the point 36 , we can take any δ satisfying $0<\delta \leq 2$. In that case the open interval $(36-\delta, 36+\delta)$ will be totally included in the interval $(30,38)$ and the required condition will be satisfied.

Q-2) Is there a number which is 1 less than its cube? ${ }_{(5 \text { points })}$
Answer: This is equivalent to asking if $f(x)=x^{3}-x-1$ has a real root or not.
We notice first that f is a polynomial so is continuous everywhere. Hence the Intermediate Value Theorem applies.

Then we easily calculate that $f(0)=-1<0$ and $f(2)=5>0$. By the Intermediate Value Theorem, f must have a root somewhere in the interval $(0,2)$. Say this root is a. Then $a=a^{3}-1$. In fact $a=1.324717957 \ldots$.

Here is the graph of f.

