Quiz \# 2

Math 101-Section 011 Calculus I
13 October 2016, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University

Your Name: \qquad

Student ID: \qquad Your Department:

Show your work in detail. Correct answers without justification are never graded.

Q-1) Assume that the constants a and b are so chosen that the function

$$
f(x)= \begin{cases}2 x^{2}+a x-7 & \text { if } x \geq 0 \\ 7 x^{4}-8 x^{3}+9 x+b & \text { if } x<0\end{cases}
$$

is differentiable at $x=0$. Find $f(0)$ and $f^{\prime}(0)$. $(5+5$ points $)$
Answer: If the function is differentiable at $x=0$, then it must be continuous at $x=0$. We must then have

$$
f(0)=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x) .
$$

We have

$$
\lim _{x \rightarrow 0^{-}} f(x)=b, \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} f(x)=-7,
$$

so

$$
b=-7=f(0)
$$

Next we calculate the right and left limits of $\frac{f(x)-f(0)}{x}$ as x approaches zero.

$$
f^{\prime}(0)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0^{-}} \frac{7 x^{4}-8 x^{3}+9 x}{x}=\lim _{x \rightarrow 0^{-}}\left(7 x^{3}-8 x^{2}+9\right)=9,
$$

and

$$
f^{\prime}(0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0^{+}} \frac{2 x^{2}+a x}{x}=\lim _{x \rightarrow 0^{+}}(2 x+a)=a .
$$

Hence

$$
a=9=f^{\prime}(0) .
$$

Here is the graph of $y=f(x)$:

