Bilkent University

Quiz \# 6

Math 101-Section 011 Calculus I
17 November 2016, Thursday Instructor: Ali Sinan Sertöz

Solution Key

Your Name:
Your Department: ...
Student ID: \qquad
Show your work in detail. Correct answers without justification are never graded.

Q-1) Find the maximum volume for a right circular cylinder inscribed in a sphere of radius R. (10 poins)
Answer:

Height of the cylinder is $2 x$ and the base radius is r. From the figure we have $r^{2}=R^{2}-x^{2}$. Therefore the volume is given by

$$
V(x)=2 x \pi r^{2}=2 x \pi\left(R^{2}-x^{2}\right)=2 \pi\left(R^{2} x-x^{3}\right), \quad \text { where } \quad 0 \leq x \leq R .
$$

We first find the critical points.

$$
V^{\prime}(x)=2 \pi\left(R^{2}-3 x^{2}\right)=0 \quad \text { gives } \quad x=\frac{R}{\sqrt{3}} \text { in the domain. }
$$

We now check the values of $V(x)$ at the critical point and at the end points.

$$
V(0)=0, \quad V\left(\frac{R}{\sqrt{3}}\right)=\frac{4 \pi R^{3}}{3 \sqrt{3}}, \quad V(R)=0
$$

Hence the maximum possible volume of a right circular cylinder inscribed into a sphere of radius R is $\frac{4 \pi R^{3}}{3 \sqrt{3}} \approx 2.42 R^{3}$, which is $\frac{1}{\sqrt{3}}$ of the total volume of the sphere.

