Bilkent Bilkent Bilkent Bilkent Bilkent Bilkent Bilkent Bilkent	Quiz # 6 Iath 101-Section 011 Calculus I 17 November 2016, Thursday Instructor: Ali Sinan Sertöz	
Bilkent University	Solution Rey	
	Your Name:	
Student ID:	Your Department:	

Show your work in detail. Correct answers without justification are never graded.

Q-1) Find the maximum volume for a right circular cylinder inscribed in a sphere of radius R. (10 points)

Answer:

Height of the cylinder is 2x and the base radius is r. From the figure we have $r^2 = R^2 - x^2$. Therefore the volume is given by

$$V(x) = 2x \, \pi r^2 = 2x \, \pi (R^2 - x^2) = 2\pi (R^2 x - x^3), \quad \text{where} \quad 0 \le x \le R.$$

We first find the critical points.

$$V'(x) = 2\pi (R^2 - 3x^2) = 0$$
 gives $x = \frac{R}{\sqrt{3}}$ in the domain.

We now check the values of V(x) at the critical point and at the end points.

$$V(0) = 0, V(\frac{R}{\sqrt{3}}) = \frac{4\pi R^3}{3\sqrt{3}}, V(R) = 0.$$

Hence the maximum possible volume of a right circular cylinder inscribed into a sphere of radius R is $\frac{4\pi R^3}{3\sqrt{3}} \approx 2.42R^3$, which is $\frac{1}{\sqrt{3}}$ of the total volume of the sphere.