san Doğrama	
Bilkent	
1984	
Billent Universit	

Quiz # 8 Math 101-Section **011** Calculus I 1 December 2016, Thursday Instructor: Ali Sinan Sertöz Solution Key

Bilkent University

Student ID:

Your Name:	
Your Department:	

Show your work in detail. Correct answers without justification are never graded.

Q-1) Let D be the region bounded by the curves y = 0, $x = 4y^2 - 5$ and $x = y^2 + 1$. Find the volume of the solid obtained by revolving the region D around the x-axis.

Answer:

For x between -5 and 3, a point on the curve $x = 4y^2 - 5$ is rotated around the x-axis to obtain a solid. From this solid we subtract the solid obtained by rotating a point on the curve $x = y^2 + 1$ for x between 1 and 3.

$$V = \pi \int_{-5}^{3} y^2 \, dx - \pi \int_{1}^{3} y^2 \, dx$$

= $\pi \int_{-5}^{3} \frac{x+5}{4} \, dx - \pi \int_{1}^{3} (x-1) \, dx$
= $\pi \left(\frac{1}{8} x^2 + \frac{5}{4} x \Big|_{-5}^{3} \right) - \pi \left(\frac{1}{2} x - x \Big|_{1}^{3} \right)$
= $8\pi - 2\pi = 6\pi$.

We can also use cylindrical shells. A typical point of height y on the curve $x = 4y^2 - 5$ is of the form $(4y^2 - 5, y)$. A typical point of height y on the curve $x = y^2 + 1$ is of the form $(y^2 + 1, y)$. The horizontal distance between them is $h = (y^2 + 1) - (4y^2 - 5)$. Then the volume is calculated as

$$V = 2\pi \int_0^{\sqrt{2}} y \, h \, dy = 2\pi \int_0^{\sqrt{2}} y \, (6 - 3y^2) \, dy = 2\pi \left(3y^2 - \frac{3}{4} \, y^4 \Big|_0^{\sqrt{2}} \right) = 6\pi.$$