Quiz \# 8
Math 101-Section 011 Calculus I
1 December 2016, Thursday
Instructor: Ali Sinan Sertöz
Solution Key
Bilkent University
Your Name: \qquad
Student ID:
Your Department: ...
Show your work in detail. Correct answers without justification are never graded.

Q-1) Let D be the region bounded by the curves $y=0, x=4 y^{2}-5$ and $x=y^{2}+1$. Find the volume of the solid obtained by revolving the region D around the x-axis.

Answer:

For x between -5 and 3 , a point on the curve $x=4 y^{2}-5$ is rotated around the x-axis to obtain a solid. From this solid we subtract the solid obtained by rotating a point on the curve $x=y^{2}+1$ for x between 1 and 3 .

$$
\begin{aligned}
V & =\pi \int_{-5}^{3} y^{2} d x-\pi \int_{1}^{3} y^{2} d x \\
& =\pi \int_{-5}^{3} \frac{x+5}{4} d x-\pi \int_{1}^{3}(x-1) d x \\
& =\pi\left(\frac{1}{8} x^{2}+\left.\frac{5}{4} x\right|_{-5} ^{3}\right)-\pi\left(\frac{1}{2} x-\left.x\right|_{1} ^{3}\right) \\
& =8 \pi-2 \pi=6 \pi
\end{aligned}
$$

We can also use cylindrical shells. A typical point of height y on the curve $x=4 y^{2}-5$ is of the form $\left(4 y^{2}-5, y\right)$. A typical point of height y on the curve $x=y^{2}+1$ is of the form $\left(y^{2}+1, y\right)$. The horizontal distance between them is $h=\left(y^{2}+1\right)-\left(4 y^{2}-5\right)$. Then the volume is calculated as

$$
V=2 \pi \int_{0}^{\sqrt{2}} y h d y=2 \pi \int_{0}^{\sqrt{2}} y\left(6-3 y^{2}\right) d y=2 \pi\left(3 y^{2}-\left.\frac{3}{4} y^{4}\right|_{0} ^{\sqrt{2}}\right)=6 \pi
$$

