Quiz \# 9
Math 101-Section 011 Calculus I
8 December 2016, Thursday
Instructor: Ali Sinan Sertöz
Solution Key
Bilkent University
Your Name: \qquad

Student ID:
Your Department: ...

Show your work in detail. Correct answers without justification are never graded.

Q-1) Let D be the region bounded by the curves $y=e^{-x^{2}}, y=0, x=0$ and $x=1$. Find the volume of the solid obtained by revolving the region D around the y-axis.

Using cyclindrical shells method seems convenient for this problem. The height of the above thich line is $e^{-x^{2}}$, its thickness is $d x$ and it travels a distance of $2 \pi x$ around the y-axis. Hence its incremental volume is $2 \pi x e^{-x^{2}}$. We now $a d d$ all these volumes between $x=0$ and $x=1$ to find the total volume.

$$
V=2 \pi \int_{0}^{1} x e^{-x^{2}} d x=\pi\left(-\left.e^{-x^{2}}\right|_{0} ^{1}\right)=\pi\left(1-e^{-1}\right) \approx 1.985865304
$$

In the second step we used the substitution $u=-x^{2}$ to find an anti-derivative of $x e^{-x^{2}}$
For another solution see next page.

The volume obtained by revolving the above colored region around the y-axis is the sum of the volumes obtained by revolving the blue and yellow regions separately.

The blue region revolved around the y-axis gives a cylinder of volume π / e.
For the yellow region we note that the length of the thick line which is the radius of the circle of revolution is $x=\sqrt{-\ln y}$. Hence the volume of that solid of revolution is

$$
\pi \int_{1 / e}^{1} \ln y d y=\left(y \ln y-\left.y\right|_{1 / e} ^{1}\right)=\pi\left(1-\frac{2}{e}\right) .
$$

Adding these two volumes we find

$$
V=\frac{\pi}{e}+\pi\left(1-\frac{2}{e}\right)=\pi\left(1-\frac{1}{e}\right) \approx 1.985865304
$$

