Quiz \# 3
Math 101-Section 01 Calculus I
13 October 2017, Friday
Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University

Your Name: \qquad
Your Student ID:

Q-1) Find b such that the line $y=b-\sqrt{3} x$ is tangent to the ellipse $x^{2}+7 y^{2}=616$ at a point in the first quadrant.
(10 points)

Solution:

First find y^{\prime} by implicit differentiation; differentiate both sides of $x^{2}+7 y^{2}=616$ with respect to x to obtain $2 x+14 y y^{\prime}=0$. Solving for y^{\prime} we get $y^{\prime}=-\frac{1}{7} \frac{x}{y}$, when $y \neq 0$. This is the slope of the tangent line $y=b-\sqrt{3} x$. Therefore $y^{\prime}=-\frac{1}{7} \frac{x}{y}=-\sqrt{3}$. This gives $x=7 \sqrt{3} y$. Putting this back into the equation $x^{2}+7 y^{2}=616$ and solving for y gives $y^{2}=4$. Since the tangency point is required to be in the first quadrant, we must have $y \geq 0$. So we get $y=2$. This gives in return $x=14 \sqrt{3}$. Thus the point of tangency is $(14 \sqrt{3}, 2)$. Now finally putting these values of x and y into the equation of the line and solving for b gives $b=44$.

An alternate solution uses the parametrization of the given ellipse as $x=\sqrt{616} \sin \theta$ and $y=$ $\sqrt{616 / 7} \sin \theta$. Putting these into the equation of y^{\prime} as above we find that $\cot \theta=\sqrt{21}$. From here we find the values of $\sin \theta$ and $\cos \theta$ and obtain the coordinates of the tangency point. The rest is as above.

