Quiz \# 4
Math 101-Section 01 Calculus I
20 October 2017, Friday
Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University

Your Name:

Your Student ID:

Q-1) Water runs into a tank which is in the shape of an upside-down cone with radius 35 cm and height 77 cm , at the constant rate of $100 \pi \mathrm{~cm}^{3} / \mathrm{min}$. Suppose we started with the tank empty. What is the height of the water in the tank when the water level is increasing at the rate of $5 \mathrm{~cm} / \mathrm{min}$? (10 points)

Solution:

We have $\frac{35}{77}=\frac{r}{h}$, which gives $r=\frac{35 h}{77}$.
The volume of water in the tank at any moment is given by $V=\frac{\pi}{3} r^{2} h=\frac{\pi}{3}\left(\frac{35 h}{77}\right)^{2} h=\frac{\pi}{3}\left(\frac{5}{11}\right)^{2} h^{3}$.
Taking the derivative of the volume with respect to time, we get

$$
V^{\prime}=\frac{25 \pi}{121} h^{2} h^{\prime}
$$

Putting in the values $V^{\prime}=100 \pi, h^{\prime}=5$, we get

$$
100 \pi=\frac{125 \pi}{121} h^{2}
$$

This gives

$$
h=\frac{22}{\sqrt{5}} \mathrm{~cm} \approx 9.8 \mathrm{~cm} .
$$

