Quiz \# 2
Math 101-Section 01 Calculus I
16 February, 2018, Friday
Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University

Name: \qquad
Department: \qquad Student ID:

Q-1) Let $f(x)=\frac{1}{1+x^{2}}$.
(i) Write an equation for the tangent line to $y=f(x)$ at $x=t$
(ii) Let $A(t)$ denote the area of the triangle formed by the coordinate axes and the above tangent line. Find $A(1)$.

Answer: If $f(x)=\frac{1}{1+x^{2}}$, then $f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$, and at the point $x=t$, the slope of the tangent line is $f^{\prime}(t)=\frac{-2 t}{\left(1+t^{2}\right)^{2}}$. Then an eqution for the tangent line at the point $\left(t, \frac{1}{\left(1+t^{2}\right)}\right)$ is

$$
y=\frac{-2 t}{\left(1+t^{2}\right)^{2}}(x-t)+\frac{1}{\left(1+t^{2}\right)}
$$

When $x=0$, we find that the y-intercept is y_{0}, and when $y=0$, we find that the x-intercept is x_{0}, where

$$
x_{0}=\frac{1+3 t^{2}}{2 t}, \quad y_{0}=\frac{1+3 t^{2}}{\left(1+t^{2}\right)^{2}} .
$$

Thus the area of the above mentioned triangle is

$$
A(t)=\frac{1}{2} x_{0} y_{0}=\frac{\left(1+3 t^{2}\right)^{2}}{4 t\left(1+t^{2}\right)^{2}}
$$

Finally, we evaluate this at $t=1$, to find

$$
A(1)=1
$$

