Quiz \# 7
Math 101-Section 01 Calculus I
30 March, 2018, Friday
Instructor: Ali Sinan Sertöz
Solution Key
Bilkent University
Name: \qquad
Department: \qquad Student ID: \qquad

Q-1) We want to construct an open top box by cutting off squares from the corners of a rectangular sheet of paper and then folding, as in the figure.
Assume that the dimensions of the sheet are $0<A<B$ units. Find the dimensions of the box that has maximum volume when $A=8$ and $B=15$ units.

Answer:

Let the side of the square to be cut off be x. Then the volume is

$$
V(x)=x(A-2 x)(B-2 x)=4 x^{3}-2(A+B) x^{2}+A B x, 0 \leq x \leq A / 2
$$

And
$V^{\prime}(x)=12 x^{2}-4(A+B) x+A B=0$ when $x_{1}=\frac{1}{6}\left(A+B-\sqrt{A^{2}-A B+B^{2}}\right), x_{2}=\frac{1}{6}\left(A+B+\sqrt{A^{2}-A B+B^{2}}\right)$.
It is easy to check that

$$
0<x_{1}<A / 2<x_{2}
$$

Since $V(0)=0$ and $V(A / 2)=0$, this critical point gives the absolute maximum value. In fact you can also check that $V^{\prime \prime}(x)>0$ on the given interval.

Finally, the maximum volume is obtained when $x=x_{1}$, and then

$$
V\left(x_{1}\right)=\frac{1}{18}\left(A^{2} B+A B^{2}\right)-\frac{1}{27}\left(A^{3}+B^{3}\right)+\frac{1}{27}\left(A^{2}-A B+B^{2}\right)^{3 / 2}
$$

Now putting in $A=8, B=15$ gives $x_{1}=5 / 3$.
To get full marks, you have to:

1. Correctly formulate the problem with the domain
2. Determine the critical points inside the domain
3. Argue correctly about where the maximum volume occurs.
