Quiz \# 11
Math 101-Section 01 Calculus I
11 May, 2018, Friday
Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University
Name: \qquad
Department: \qquad Student ID:

Q-1)

(i) Show that the equation $2^{x}=x^{2}$ has two positive and one negative roots.
(ii) Find the positive roots by trial and error. (Hint: Both of the positive roots are integers.)
(iii) Find the negative root in terms of the Lambert W function which is the inverse of the function $x \mapsto x e^{x}$. (Hint: Collect all expressions involving x to one side and leave the other side as a constant. Manipulate the equation so that it looks like $f(x) e^{f(x)}=K$, where K is a constant. Then we have $W\left(f(x) e^{f(x)}\right)=W(K)$, and by the definition of the W function we have $W\left(f(x) e^{f(x)}\right)=f(x)$. Now solve $f(x)=W(K)$ as $x=f^{-1}(W(K))$.)

Answer: The above graph shows the graphs of $y=2^{x}=f(x)$ and $y=x^{2}=g(x)$ together. At $x=0$ we have $g(x)=0<f(x)=1$, but as x goes to minus infinity $f(x)$ steadily decreases to zero while $g(x)$ steadily goes to plus infinity. Therefore they intersect at a point. This is the negative solution. Clearly they don't intersect at any other negative point.

When $x=2$ we have an obvious solution. Slightly after $x=2$, we have $x^{2}>2^{x}$ but 2^{x} grows much faster than x^{2} so eventually the two graphs intersect again and from there on $2^{x}>x^{2}$. These arguments can be made precise and convincing by using some L'Hospital arguments.

The other positive root can easily be guessed as $x=4$.
Now back to the negative root.
We have $2^{x}=x^{2}$ for some $x<0$. Write $2^{x}=e^{x \ln 2}$.

$$
\begin{aligned}
e^{x \ln 2} & =x^{2} \\
e^{\frac{x}{2} \ln 2} & =-x, \text { since } x<0 \\
e^{-\frac{x}{2} \ln 2} & =-\frac{1}{x} \\
-x e^{-\frac{x}{2} \ln 2} & =1 \\
\left(-\frac{x}{2} \ln 2\right) e^{\left(-\frac{x}{2} \ln 2\right)} & =\frac{\ln 2}{2} .
\end{aligned}
$$

Now apply W function to both sides to get

$$
-\frac{x}{2} \ln 2=W\left(\frac{\ln 2}{2}\right),
$$

or equivalently

$$
x=-\frac{2}{\ln 2} W\left(\frac{\ln 2}{2}\right) .
$$

This gives

$$
x \approx-0.76
$$

Note that for the positive roots we will have $x=-\frac{2}{\ln 2} W\left(-\frac{\ln 2}{2}\right)$. In fact W function has many branches, like the arctan function, and its branches are indexed by integers and $2^{x}=x^{2}$ has infinitely many solutions, all except three, are complex numbers. The real roots are given by

$$
-0.76 \ldots=-\frac{2}{\ln 2} W\left(0, \frac{\ln 2}{2}\right), 2=-\frac{2}{\ln 2} W\left(0,-\frac{\ln 2}{2}\right), 4=-\frac{2}{\ln 2} W\left(1,-\frac{\ln 2}{2}\right)
$$

