Quiz \# 11
Math 101-Section 06 Calculus I
10 May, 2018, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University
Name: \qquad
Department: \qquad Student ID:

Q-1)

(i) Show that the equation $3^{x}=x^{3}$ has two positive roots but no negative roots.
(ii) Find one of the positive roots by trial and error. (Hint: It is an integer.)
(iii) Find the other positive root in terms of the Lambert W function which is the inverse of the function $x \mapsto x e^{x}$. (Hint: Collect all expressions involving x to one side and leave the other side as a constant. Manipulate the equation so that it looks like $f(x) e^{f(x)}=K$, where K is a constant. Then we have $W\left(f(x) e^{f(x)}\right)=W(K)$, and by the definition of the W function we have $W\left(f(x) e^{f(x)}\right)=f(x)$. Now solve $f(x)=W(K)$ as $x=f^{-1}(W(K))$.)

Answer: The above graph shows the graphs of $y=3^{x}$ and $y=x^{3}$ together. At $x=0$ we have 3^{x} equal 1 and x^{3} equal to zero. For negative x, we have that 3^{x} is always positive but x^{3} is always negative so they don't intersect. Thus there is no negative solution.

When $x=3$ we have an obvious solution. After $x=3$, we have $x^{3}<3^{x}$, but slightly before $x=3$ we have $x^{3}>3^{x}$. But at $x=0$ this inequality is again reversed, so in between there is a solution. These arguments can be made precise and convincing by using some L'Hospital arguments.

Now to find this other root:
We have $3^{x}=x^{3}$ for some $0<x<3$. Write $3^{x}=e^{x \ln 3}$.

$$
\begin{aligned}
e^{x \ln 3} & =x^{3} \\
e^{\frac{x}{3} \ln 3} & =x \\
e^{-\frac{x}{3} \ln 3} & =\frac{1}{x} \\
-x e^{-\frac{x}{3} \ln 3} & =-1 \\
\left(-\frac{x}{3} \ln 3\right) e^{\left(-\frac{x}{3} \ln 3\right)} & =-\frac{\ln 3}{3} .
\end{aligned}
$$

Now apply W function to both sides to get

$$
-\frac{x}{3} \ln 3=W\left(-\frac{\ln 3}{3}\right)
$$

or equivalently

$$
x=-\frac{3}{\ln 3} W\left(\frac{\ln 3}{3}\right) .
$$

This gives

$$
x \approx 2.47
$$

In fact the W function has many branches like the arctan function and its branches are indexed by integers. Hence $3^{x}=x^{3}$ has infinitely many solutions all of which, except the two, are complex numbers. The real roots are given as

$$
2.47 \ldots=-\frac{3}{\ln 3} W\left(0, \frac{\ln 3}{3}\right), 3=-\frac{3}{\ln 3} W\left(-1, \frac{\ln 3}{3}\right)
$$

