Quiz \# 3
Math 101-Section 09 Calculus I
16 October 2018, Friday
Instructor: Ali Sinan Sertöz
Solution Key
Bilkent University


Q-1) Angle $\theta$ depends on time as $\theta(t)=\frac{\pi}{15} t$, where $t$ is in seconds and all distances are in centimeters We have two points in the plane given as $P(t)=(\sin \theta, \cos \theta)$ and $Q=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. How fast is the point $P$ moving away from the point $Q$ when $t=5$ ?

## Solution:

Let $d(t)$ be the distance between $P$ and $Q$. Then

$$
d(t)^{2}=\left(\sin \theta+\frac{1}{\sqrt{2}}\right)^{2}+\left(\cos \theta-\frac{1}{\sqrt{2}}\right)^{2}=2+\sqrt{2}(\sin \theta-\cos \theta) .
$$

Taking derivatives of both sides with respect to $t$, we get

$$
2 d(t) d^{\prime}(t)=\sqrt{2}(\cos \theta+\sin \theta) \theta^{\prime}(t)=\sqrt{2}(\cos \theta+\sin \theta) \frac{\pi}{15}
$$

We find that

$$
d(5)^{2}=2+\sqrt{2}\left(\frac{\sqrt{3}-1}{2}\right),
$$

and

$$
2 d(5) d^{\prime}(5)=\sqrt{2}\left(\frac{\sqrt{3}+1}{2}\right) \frac{\pi}{15} .
$$

Hence

$$
d^{\prime}(5)=\frac{\sqrt{2}(\sqrt{3}+1) \pi}{15 \sqrt{8+2 \sqrt{2}(\sqrt{3}-1)}} \approx 0.25
$$

Thus the point $P$ is moving away from point $Q$ with a speed of 0.25 centimeters per second.

