Quiz \# 3
Math 101-Section 13 Calculus I
25 October 2018, Thursday
Instructor: Ali Sinan Sertöz
Solution Key
Bilkent University

Q-1) The point P is moving along the y-axis upwards with the constant speed of $2 \mathrm{~cm} / \mathrm{sec}$ and the point Q is moving along the x-axis towards right with the constant speed of $5 \mathrm{~cm} / \mathrm{sec}$. In the beginning P is at $(0,15)$ and Q is at the origin. How fast is the distance between P and Q changing 3 seconds later.

Solution:

We notice that $P(t)=(0,15+2 t)$ and $Q(t)=(5 t, 0)$. Letting $d(t)$ be the distance between them at time t, we get

$$
d(t)^{2}=29 t^{2}+60 t+225
$$

Taking derivatives of both sides with respect to t,

$$
2 d(t) d^{\prime}(t)=58 t+60
$$

We note that $d(3)^{2}=666$, so

$$
d^{\prime}(3)=\frac{39}{\sqrt{74}} \approx 4.5
$$

Hence 3 seconds later the distance between these two points is increasing at a rate of $4.5 \mathrm{~cm} / \mathrm{sec}$.

