Quiz \# 5
Math 101-Section 13 Calculus I
8 November 2018, Thursday
Instructor: Ali Sinan Sertöz
Solution Key
Bilkent University

Q-1) Let $f(x)=\frac{x}{2}+x^{2} \sin \frac{1}{x}$ for $x \neq 0$, and $f(0)=0$.

1. Calculate $f^{\prime}(0)$, and check that it is positive.
2. Show however that f is not increasing on any interval of the form $(0, \epsilon)$ where $\epsilon>0$.

Solution:

1. Note that since $f(0)$ is defined as 0 at $x=0$, we assume that $g(x)=x^{2} \sin \frac{1}{x}$ is defined as 0 at $x=0$.

Note also that

$$
-x \leq x \sin \frac{1}{x} \leq x, \text { for } x \neq 0
$$

so $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$ by the Sandwich Theorem. Hence

$$
\left.\frac{d}{d x}\right|_{x=0} x^{2} \sin \frac{1}{x}=\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x}=\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0 .
$$

This means

$$
f^{\prime}(0)=\left.\frac{d}{d x}\right|_{x=0} \frac{x}{2}+\left.\frac{d}{d x}\right|_{x=0} x^{2} \sin \frac{1}{x}=\frac{1}{2}, \text { and hence is positive. }
$$

2. Choose any $\epsilon>0$ you like. Let N be a large integer such that

$$
\frac{1}{2 n \pi}, \frac{1}{\frac{\pi}{2}+2 n \pi} \in(0, \epsilon), \text { for all } n \geq N
$$

Note that

$$
f^{\prime}(x)=\frac{1}{2}+2 x \sin \frac{1}{x}-\cos \frac{1}{x}, \text { for } x>0 .
$$

Then it is easy to see that

$$
f^{\prime}\left(\frac{1}{2 n \pi}\right)<0 \text { and } f^{\prime}\left(\frac{1}{\frac{\pi}{2}+2 n \pi}\right)>0, \text { for all } n \geq N
$$

This means that f is not increasing on the interval $(0, \epsilon)$.

