

Quiz \# 7
Math 101-Section 09 Calculus I
23 November 2018, Friday
Instructor: Ali Sinan Sertöz
Solution Key
Bilkent University

Q-1) A huge spherical snowball of radius 6 m begins to melt. It melts at a rate proportional to its surface area. After 30 min its radius becomes 1 m . Find much longer will it take to melt completely.

Solution:

Let $R(t)$ denote the radius of the snowball at time $t, S(t)$ the surface area and $V(t)$ the volume. We have

$$
V(t)=\frac{4 \pi}{3} R(t)^{3}, \quad S(t)=4 \pi R(t)^{2}
$$

That the snowball melts at a rate proportional to surface area means that there is a constant α such that

$$
V^{\prime}(t)=\alpha S(t)
$$

This gives

$$
4 \pi R(t)^{2} R^{\prime}(t)=4 \alpha \pi R(t)^{2}, \text { or } R^{\prime}(t)=\alpha
$$

Thus

$$
R(t)=\alpha t+C, \quad \text { for some constant } C
$$

But we know that $R(0)=6$, so we have

$$
R(t)=\alpha t+6, \quad \text { where } t \text { is in minutes. }
$$

We are given that $R(30)=1$. This forces $\alpha=-1 / 6$ and we finally have

$$
R(t)=-\frac{t}{6}+6
$$

Next we want to find t such that $R(t)=0$. This gives $t=36$. Since it already took 30 min for the radius to become 1 m , it will take 6 min more for the snowball to melt completely.

