

Quiz # 7 Math 101-Section **09** Calculus I 23 November 2018, Friday Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University

Q-1) A huge spherical snowball of radius 6 m begins to melt. It melts at a rate proportional to its surface area. After 30 min its radius becomes 1 m. Find much longer will it take to melt completely.

Solution:

Let R(t) denote the radius of the snowball at time t, S(t) the surface area and V(t) the volume. We have

$$V(t) = \frac{4\pi}{3}R(t)^3$$
, $S(t) = 4\pi R(t)^2$.

That the snowball melts at a rate proportional to surface area means that there is a constant α such that

$$V'(t) = \alpha S(t).$$

This gives

$$4\pi R(t)^2 R'(t) = 4\alpha \pi R(t)^2$$
, or $R'(t) = \alpha$.

Thus

$$R(t) = \alpha t + C$$
, for some constant C .

But we know that R(0) = 6, so we have

$$R(t) = \alpha t + 6$$
, where t is in minutes.

We are given that R(30) = 1. This forces $\alpha = -1/6$ and we finally have

$$R(t) = -\frac{t}{6} + 6.$$

Next we want to find t such that R(t) = 0. This gives t = 36. Since it already took $30 \ min$ for the radius to become $1 \ m$, it will take $6 \ min$ more for the snowball to melt completely.