

Quiz \# 7
Math 101-Section 13 Calculus I
22 November 2018, Thursday Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University

Q-1) A huge spherical snowball of radius $9 m$ begins to melt. It melts at a rate proportional to its surface area. After 5 h its surface area becomes $36 \pi \mathrm{~m}^{2}$. Find much longer will it take to melt completely.

Solution:

Let $R(t)$ denote the radius of the snowball at time $t, S(t)$ the surface area and $V(t)$ the volume. We have

$$
V(t)=\frac{4 \pi}{3} R(t)^{3}, \quad S(t)=4 \pi R(t)^{2}
$$

That the snowball melts at a rate proportional to surface area means that there is a constant α such that

$$
V^{\prime}(t)=\alpha S(t)
$$

This gives

$$
4 \pi R(t)^{2} R^{\prime}(t)=4 \alpha \pi R(t)^{2}, \text { or } R^{\prime}(t)=\alpha
$$

Thus

$$
R(t)=\alpha t+C, \quad \text { for some constant } C
$$

But we know that $R(0)=9$, so we have

$$
R(t)=\alpha t+9, \quad \text { where } t \text { is in hours. }
$$

We are given that $S(5)=36 \pi$. This forces $\alpha=-6 / 5$ and we finally have

$$
R(t)=-\frac{6}{5} t+9
$$

Next we want to find t such that $R(t)=0$. This gives $t=15 / 2=7.5$. Since it already took $5 h$ for the surface area to become $36 \pi \mathrm{~m}^{2}$, it will take $2 h$ and 30 min more for the snowball to melt completely.

