

Quiz \# 8
Math 101-Section 09 Calculus I
30 November 2018, Friday
Instructor: Ali Sinan Sertöz
Solution Key
Bilkent University

Q-1) Calculate $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n+k}{\sqrt{2 n^{4}+2 k n^{3}+k^{2} n^{2}}}$.

Solution:

Let

$$
f(x)=\frac{x}{\sqrt{1+x^{2}}}, \quad x_{k}=1+\frac{k}{n}, \text { and } \Delta x=\frac{1}{n} .
$$

Then

$$
\frac{n+k}{\sqrt{2 n^{4}+2 k n^{3}+k^{2} n^{2}}}=\frac{1+\frac{k}{n}}{\sqrt{1+\left(1+\frac{k}{n}\right)^{2}}} \frac{1}{n}=f\left(x_{k}\right) \Delta x
$$

Note that f is defines on $\left[x_{0}, x_{n}\right]=[1,2]$.
Hence the given sum is the Riemann sum of $f(x)$ on $[1,2]$. It is then equal to the following integral.

$$
\int_{1}^{2} \frac{x}{\sqrt{1+x^{2}}} d x=\left(\left.\sqrt{1+x^{2}}\right|_{1} ^{2}\right)=\sqrt{5}-\sqrt{2} \approx 0.82
$$

