

Bilkent University

Quiz # 9 Math 101-Section **09** Calculus I 7 December 2018, Friday Instructor: Ali Sinan Sertöz **Solution Key**

Q-1) Find the volume obtained by revolving around the *x*-axis the region between the curves $y = \sin x$ and $y = \cos x$ on $[0, \pi/2]$.

Solution:

We first find the intersection point by solving $\sin x = \cos x$, which gives $x = \pi/4$ on $[0, \pi/2]$. The volume then becomes

$$V = \pi \int_0^{\pi/4} [(\cos x)^2 - (\sin x)^2] dx + \pi \int_{\pi/4}^{\pi/2} [(\sin x)^2 - /\cos x)^2] dx$$

= $\pi \int_0^{\pi/4} \cos 2x \, dx - \pi \int_{\pi/4}^{\pi/2} \cos 2x \, dx$
= $\pi \left(\frac{1}{2} \sin 2x \Big|_0^{\pi/4}\right) - \pi \left(\frac{1}{2} \sin 2x \Big|_{\pi/4}^{\pi/2}\right)$
= $\frac{\pi}{2} + \frac{\pi}{2} = \pi.$