Bilkent University

Quiz \# 9
Math 101-Section 09 Calculus I
7 December 2018, Friday
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) Find the volume obtained by revolving around the x-axis the region between the curves $y=\sin x$ and $y=\cos x$ on $[0, \pi / 2]$.

Solution:

We first find the intersection point by solving $\sin x=\cos x$, which gives $x=\pi / 4$ on $[0, \pi / 2]$.
The volume then becomes

$$
\begin{aligned}
V & \left.=\pi \int_{0}^{\pi / 4}\left[(\cos x)^{2}-(\sin x)^{2}\right] d x+\pi \int_{\pi / 4}^{\pi / 2}\left[(\sin x)^{2}-/ \cos x\right)^{2}\right] d x \\
& =\pi \int_{0}^{\pi / 4} \cos 2 x d x-\pi \int_{\pi / 4}^{\pi / 2} \cos 2 x d x \\
& =\pi\left(\left.\frac{1}{2} \sin 2 x\right|_{0} ^{\pi / 4}\right)-\pi\left(\left.\frac{1}{2} \sin 2 x\right|_{\pi / 4} ^{\pi / 2}\right) \\
& =\frac{\pi}{2}+\frac{\pi}{2}=\pi
\end{aligned}
$$

