Bilkent University

Quiz \# 9
Math 101-Section 13 Calculus I
6 December 2018, Thursday Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Find the volume obtained by revolving around the $x$-axis the region between the curves $y=x \sqrt{1+x^{2}}$ and $y=2 x$ on $[0,2]$.

## Solution:



We first find the intersection point by solving $x \sqrt{1+x^{2}}=2 x$, which gives $x=0$ and $x=\sqrt{3}$ on [0, 2].

The volume then becomes

$$
\begin{aligned}
V & =\pi \int_{0}^{\sqrt{3}}\left[(2 x)^{2}-\left(x \sqrt{1+x^{2}}\right)^{2}\right] d x+\pi \int_{\sqrt{3}}^{2}\left[\left(x \sqrt{1+x^{2}}\right)^{2}-(2 x)^{2}\right] d x \\
& =\pi \int_{0}^{\sqrt{3}}\left[3 x^{2}-x^{4}\right] d x+\pi \int_{\sqrt{3}}^{2}\left[x^{4}-3 x^{2}\right] d x \\
& =\pi\left(x^{3}-\left.\frac{x^{5}}{5}\right|_{0} ^{\sqrt{3}}\right)+\pi\left(\frac{x^{5}}{5}-\left.x^{3}\right|_{\sqrt{3}} ^{2}\right) \\
& =\pi\left(\frac{6 \sqrt{3}}{5}\right)+\pi\left(\frac{6 \sqrt{3}}{5}-\frac{8}{5}\right) \\
& =\frac{12 \sqrt{3}-8}{5} \pi \approx 2.56 \pi \approx 8.03 .
\end{aligned}
$$

