


Bilkent University

Quiz # 10 Math 101-Section **09** Calculus I 14 December 2018, Friday Instructor: Ali Sinan Sertöz

Solution Key

Q-1) For any positive integer n, let A(n) denote the area bounded by the curves $y = \frac{\ln x}{x}$ and $y = \frac{(\ln x)^{2n}}{x}$. Find $\lim_{n \to \infty} A(n)$.

Solution:

The two curves intersect at x = 1 and x = e, as can be easily solved. Hence

$$A(n) = \int_{1}^{e} \left[\frac{\ln x}{x} - \frac{(\ln x)^{2n}}{x} \right] dx$$

$$= \frac{1}{2} \left((\ln x)^{2} \Big|_{1}^{e} \right) - \frac{1}{2n+1} \left((\ln x)^{2n+1} \Big|_{1}^{e} \right)$$

$$= \frac{1}{2} - \frac{1}{2n+1}.$$

Now it is clear that

$$\lim_{n \to \infty} A(n) = \frac{1}{2}.$$