Quiz \# 10
Math 101-Section 09 Calculus I
14 December 2018, Friday
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) For any positive integer n, let $A(n)$ denote the area bounded by the curves $y=\frac{\ln x}{x}$ and $y=\frac{(\ln x)^{2 n}}{x}$. Find $\lim _{n \rightarrow \infty} A(n)$.

Solution:

The two curves intersect at $x=1$ and $x=e$, as can be easily solved. Hence

$$
\begin{aligned}
A(n) & =\int_{1}^{e}\left[\frac{\ln x}{x}-\frac{(\ln x)^{2 n}}{x}\right] d x \\
& =\frac{1}{2}\left(\left.(\ln x)^{2}\right|_{1} ^{e}\right)-\frac{1}{2 n+1}\left(\left.(\ln x)^{2 n+1}\right|_{1} ^{e}\right) \\
& =\frac{1}{2}-\frac{1}{2 n+1}
\end{aligned}
$$

Now it is clear that

$$
\lim _{n \rightarrow \infty} A(n)=\frac{1}{2}
$$

