

Bilkent University

Quiz # 04 Math 101-Section 08 Calculus I 24 October 2019, Thursday Instructor: Ali Sinan Sertöz Solution Key

Q-1) Let
$$f(x,y) = \frac{1}{16}x^4y^4 - \frac{1}{2}x^2y^3 + \frac{1}{3}x^3y^2 + 2x.$$

- (i) Implicitly differentiate f(x, y) = 0 with respect to x, assuming that y is a differentiable function of x. (3 points)
- (ii) Write an equation of the tangent line to the curve $f(x, y) = \frac{1}{3}$, at the point (1, 2) on the curve. (2 points)
- (iii) Write an equation of the tangent line to the curve $f(x, y) = -\frac{23}{3}$, at the point (-2, 1) on the curve.
- (iv) Find the point where these two tangent lines intersect. (3 points)

Remark: It is true that $f(1,2) = \frac{1}{3}$ and $f(-2,1) = -\frac{23}{3}$. You need not check these facts in this exam.

Solution:

(i)
$$\frac{1}{4}x^3y^4 - xy^3 + x^2y^2 + 2 + \left(\frac{1}{4}x^4y^3 - \frac{3}{2}x^2y^2 + \frac{2}{3}x^3y\right)y' = 0.$$

(ii) Let $g(x,y) = \frac{1}{4}x^3y^4 - xy^3 + x^2y^2 + 2 + \left(\frac{1}{4}x^4y^3 - \frac{3}{2}x^2y^2 + \frac{2}{3}x^3y\right)y'$. Differentiating both sides of $f(x,y) = \frac{1}{3}$ with respect to x assuming that y is a differentiable function of x around the

point (1,2) gives g(x,y) = 0. Solving for y' from g(1,2) = 0 we get $y' = \frac{3}{4}$. Hence an equation for the tangent line at that point is

$$y = L_1(x)$$
 where $L_1(x) = \frac{3}{4}(x-1) + 2$

(iii) Differentiating both sides of $f(x, y) = -\frac{23}{3}$ with respect to x assuming that y is a differentiable function of x around the point (-2, 1) gives g(x, y) = 0. Solving for y' from g(-2, 1) = 0 we get $y' = \frac{9}{11}$. Hence an equation for the tangent line at that point is

$$y = L_2(x)$$
 where $L_2(x) = \frac{9}{11}(x+2) + 1$.

(iv) Solving $L_1(x) = L_2(x)$, we find $x = -\frac{61}{3}$. Solving for y, either from $y = L_1(-\frac{61}{3})$ or from $y = L_2(-\frac{61}{3})$, we find y = -14. Hence these two tangent lines intersect at $\left(-\frac{61}{3}, -14\right)$.