Bilkent University
Quiz \# 04
Math 101-Section 08 Calculus I
24 October 2019, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $f(x, y)=\frac{1}{16} x^{4} y^{4}-\frac{1}{2} x^{2} y^{3}+\frac{1}{3} x^{3} y^{2}+2 x$.
(i) Implicitly differentiate $f(x, y)=0$ with respect to x, assuming that y is a differentiable function of x.
(3 points)
(ii) Write an equation of the tangent line to the curve $f(x, y)=\frac{1}{3}$, at the point $(1,2)$ on the curve. (2 points)
(iii) Write an equation of the tangent line to the curve $f(x, y)=-\frac{23}{3}$, at the point $(-2,1)$ on the
curve. curve.
(iv) Find the point where these two tangent lines intersect.
(3 points)
Remark: It is true that $f(1,2)=\frac{1}{3}$ and $f(-2,1)=-\frac{23}{3}$. You need not check these facts in this exam.

Solution:

(i) $\frac{1}{4} x^{3} y^{4}-x y^{3}+x^{2} y^{2}+2+\left(\frac{1}{4} x^{4} y^{3}-\frac{3}{2} x^{2} y^{2}+\frac{2}{3} x^{3} y\right) y^{\prime}=0$.
(ii) Let $g(x, y)=\frac{1}{4} x^{3} y^{4}-x y^{3}+x^{2} y^{2}+2+\left(\frac{1}{4} x^{4} y^{3}-\frac{3}{2} x^{2} y^{2}+\frac{2}{3} x^{3} y\right) y^{\prime}$. Differentiating both sides of $f(x, y)=\frac{1}{3}$ with respect to x assuming that y is a differentiable function of x around the point $(1,2)$ gives $g(x, y)=0$. Solving for y^{\prime} from $g(1,2)=0$ we get $y^{\prime}=\frac{3}{4}$. Hence an equation for the tangent line at that point is

$$
y=L_{1}(x) \text { where } L_{1}(x)=\frac{3}{4}(x-1)+2 .
$$

(iii) Differentiating both sides of $f(x, y)=-\frac{23}{3}$ with respect to x assuming that y is a differentiable function of x around the point $(-2,1)$ gives $g(x, y)=0$. Solving for y^{\prime} from $g(-2,1)=0$ we get $y^{\prime}=\frac{9}{11}$. Hence an equation for the tangent line at that point is

$$
y=L_{2}(x) \text { where } L_{2}(x)=\frac{9}{11}(x+2)+1 .
$$

(iv) Solving $L_{1}(x)=L_{2}(x)$, we find $x=-\frac{61}{3}$. Solving for y, either from $y=L_{1}\left(-\frac{61}{3}\right)$ or from $y=L_{2}\left(-\frac{61}{3}\right)$, we find $y=-14$. Hence these two tangent lines intersect at $\left(-\frac{61}{3},-14\right)$.

