Bilkent University
Quiz \# 07
Math 101-Section 08 Calculus I
14 November 2019, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) The line $y=3 x+4$ intersects the parabola $y=x^{2}$ at the points A and B. What is the maximum area a triangle $\triangle A B C$ can have, where C is a point on the parabola below the given line?
Hint: The area of a triangle with vertices $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right)$ and $C=\left(c_{1}, c_{2}\right)$ is one half the absolute value of $\left(c_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)-$ $\left(b_{1}-a_{1}\right)\left(c_{2}-a_{2}\right)$.

Solution:

We solve $x^{2}=3 x+4$ to find the x-coordinates of the intersection. This gives $A=(-1,1)$ and $B=(4,16)$. Let $C=\left(t, t^{2}\right)$ be a point on the parabola below the given line. This means $-1 \leq t \leq 4$.

Using the hint, we want to find the extreme points of

$$
f(t)=-5 t^{2}+15 t+20, \text { for } t \in[-1,4]
$$

We find that $f^{\prime}(t)=-10 t+15=0$ when $t=3 / 2$.
Evaluating f at this critical point and the end points gives

$$
f(-1)=0, \quad f(3 / 2)=125 / 4, \quad f(4)=0
$$

Hence the maximal possible area is half of $125 / 4$ which is $125 / 8=15.625$.

Here is a graph of $y=f(t),-1 \leq t \leq 4$.

