Quiz \# 08
Math 101-Section 08 Calculus I
21 November 2019, Thursday
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) Inside a right circular cone of base radius R and height H we insert an upside down right circular cone of base radius r and height h in such a manner that the bases of the cones are parallel. Find, in terms of R and H, the maximum volume that the inserted cone can attain.
Hint: The volume of the above big cone is $\frac{1}{3} \pi R^{2} H$.

Solution:

From similar triangles we get $\frac{H-h}{r}=\frac{H}{R}$. From which we get $h=H-\frac{r H}{R}$.
We substitute this into the volume formula $V=\frac{\pi}{3} r^{2} h$ for the inserted cone to obtain

$$
V(r)=\frac{\pi H}{3}\left(r^{2}-\frac{1}{R} r^{3}\right), 0 \leq r \leq R .
$$

Taking derivative with respect to r we get

$$
V^{\prime}(r)=\frac{\pi H}{3}\left(2 r-\frac{3}{R} r^{2}\right)=0, \text { which gives } r=0 \text { and } r=\frac{2}{3} R .
$$

Evaluating $V(r)$ at the critical points and at the end points we get:

$$
V(0)=0, \quad V\left(\frac{2}{3} R\right)=\frac{4}{81} \pi R^{2} H, \quad V(R)=0
$$

Hence the maximum possible volume is $\frac{4}{81} \pi R^{2} H$, or equivalently $\frac{4}{27}$ of the volume of the big cone.

