Quiz \# 09
Math 101-Section 08 Calculus I
28 November 2019, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Find a rational function of the form $f(x)=\frac{a x^{2}+b}{c x^{3}+d}$, where a, b, c, d are integers, such that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} \frac{i^{2}+n^{2}}{i^{3}+2 n^{3}}=\int_{0}^{5} f(x) d x
$$

(Do not attempt to evaluate the integral! Its value, and hence the limit, is 0.5859....)

Solution:

Subdivide the interval $[0,5]$ into n equal subintervals. The length of each subinterval is $5 / n$, and the location of the i-th subdivision is $5 i / n, i=0, \ldots, n$. We now rewrite the expression $\frac{i^{2}+n^{2}}{i^{3}+2 n^{3}}$ as

$$
\frac{i^{2}+n^{2}}{i^{3}+2 n^{3}}=\frac{\left(\frac{i}{n}\right)^{2}+1}{\left(\frac{i}{n}\right)^{3}+2} \cdot \frac{1}{n}=\frac{\frac{1}{25}\left(\frac{5 i}{n}\right)^{2}+1}{\frac{1}{125}\left(\frac{5 i}{n}\right)^{3}+2} \frac{1}{5} \frac{5}{n} .
$$

Seeing $5 / n$ as Δx and $5 i / n$ as x, we conclude that

$$
\frac{1}{5} \cdot \frac{i^{2}+n^{2}}{i^{3}+2 n^{3}}=\frac{\frac{1}{25}(x)^{2}+1}{\frac{1}{125}(x)^{3}+2} \Delta x=\frac{x^{2}+25}{x^{3}+250} \Delta x
$$

Hence

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} \frac{i^{2}+n^{2}}{i^{3}+2 n^{3}}=\int_{0}^{5} \frac{x^{2}+25}{x^{3}+250} d x
$$

