Quiz \# 11

Math 101-Section 08 Calculus I
19 December 2019, Thursday
Instructor: Ali Sinan Sertöz
Bilkent University

Solution Key

Q-1) Let $f(x)=x^{1 / x}$, where $x>0$.
(a) Find $f^{\prime}(x)$.
(b) Find $f^{\prime \prime}(x)$.
(c) Calculate $\lim _{x \rightarrow 0^{+}} f(x)$.
(d) Calculate $\lim _{x \rightarrow \infty} f(x)$.
(e) Find the minimum and maximum values of $f(x)$ for $x>0$.

Solution:

(a) $f(x)=x^{1 / x}=e^{(\ln x) / x}$, therefore, by the chain rule,

$$
f^{\prime}(x)=e^{(\ln x) / x} \frac{d}{d x} \frac{\ln x}{x}=x^{1 / x}\left(\frac{1-\ln x}{x^{2}}\right)
$$

(b) Now we apply the product rule together with the chain rule to obtain

$$
f^{\prime \prime}(x)=x^{1 / x}\left(\frac{1-\ln x}{x^{2}}\right)^{2}+x^{1 / x}\left(\frac{2 \ln x-3}{x^{3}}\right)
$$

(c) $\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x}=-\infty$, therefore $\lim _{x \rightarrow 0^{+}} x^{1 / x}=\lim _{x \rightarrow 0^{+}} e^{(\ln x) / x}=0$.
(d) $\lim _{x \rightarrow \infty} \frac{\ln x}{x}=0$ by L'Hospital's rule, therefore $\lim _{x \rightarrow \infty} x^{1 / x}=\lim _{x \rightarrow \infty} e^{(\ln x) / x}=1$.
(e) $f^{\prime}(x)=0$ when $x=e$, and $f(e)=e^{1 / e} \approx 1.44$. Hence on $(0, \infty), f$ has no minimum but its maximum is $f(e)$. Note that 0 is not a minimum for f since f never takes the value 0 .

Here is a graph of $y=f(x)$ for your information, not required as part of this quiz.

