1. A continuous function $f$ on $(-\infty, \infty)$ satisfies the following conditions:
(1) $f(0)=6, f(3)=0$
(2) $f^{\prime}(x)>0$ for $x<0$ and for $3<x ; f^{\prime}(x)<0$ for $0<x<3$
(3) $f^{\prime \prime}(x)>0$ for $x<0$ and for $0<x<3$; $f^{\prime \prime}(x)<0$ for $3<x$
(4) $\lim _{x \rightarrow-\infty} f(x)=4, \lim _{x \rightarrow \infty} f(x)=4$
(5) $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=1, \lim _{x \rightarrow 0^{+}} f^{\prime}(x)=-5 ; \lim _{x \rightarrow 3^{-}} f^{\prime}(x)=-4 / 5, \lim _{x \rightarrow 3^{+}} f^{\prime}(x)=4 / 5$
a. Sketch the graph of $y=f(x)$ making sure that all important features are clearly shown.

b. Fill in the boxes to make the following a true statement. No explanation is required.

The function $f(x)=\frac{|x-a|}{b|x|+c}$ satisfies the conditions ©-(1) if $a, b$ and $c$ are chosen as

$$
a=3, \quad b=\frac{1}{4} \text { and } \quad c=\frac{1}{2} .
$$

Since $f(3)=0$, we immediately have $a=3$. Hence we have

$$
f(x)= \begin{cases}\frac{x-3}{b x+c} & x \geq 3 \\ \frac{3-x}{b x+c} & 0 \leq x \leq 3 \\ \frac{3-x}{-b x+c} & x \leq 0\end{cases}
$$

On the other hand $f(0)=6$ gives $\frac{3}{c}=6$, or equivalently $c=\frac{1}{2}$.
Finally $\lim _{x \rightarrow \infty} f(x)=4$ gives $\frac{1}{b}=4$, or equivalently $b=\frac{1}{4}$.
2. Suppose $f$ is a twice-differentiable function on $(-\infty, \infty)$ satisfying the following conditions:
(1) $x=4$ and $x=11$ are the only critical points of $f$ in the interval $(0,15)$.
(2) $f(0)=1, f(4)=-2, f(11)=4, f(15)=-1$.
(3) $f^{\prime}(0)=-1, f^{\prime}(15)=-2$.
(4) $\left|f^{\prime \prime}(x)\right| \leq 1$ for all $x$ in the interval $[0,15]$.
a. Let $g(x)=3 f(x)-\left(f^{\prime}(x)\right)^{2}$. Show that the information given above is sufficient to determine the absolute maximum and minimum values of the function $g$ on the interval $[0,15]$, and find them.

$$
\begin{aligned}
& g^{\prime}(x)=3 f^{\prime}(x)-2 f^{\prime}(x) f^{\prime \prime}(x)=f^{\prime}(x) \cdot\left(3-2 f^{\prime \prime}(x)\right) \\
& g^{\prime}(x)=0 \Rightarrow f^{\prime}(x)=0 \text { or } f^{\prime \prime}(x)=\frac{3}{2} \\
& \Downarrow / 2
\end{aligned}
$$

$x=4, x=11 \quad$ This equation has no solution for $0<x<15$ in $(0,15)$ as $f^{\prime \prime}(x) \leq 1$ by

Critical points:

$$
\begin{aligned}
& \text { Critical points: } \\
& x=4 \Rightarrow g(4)=3 f(4)-f^{\prime}(4)^{2}=3 \cdot(-2)-0^{2}=-6 \\
& x=11 \Rightarrow g(11)=3 f(11)-f^{\prime}(11)^{2}=3 \cdot 4-0^{2}=12
\end{aligned}
$$

Endpoints:

$$
\begin{aligned}
& \text { Endpoints: } \\
& \begin{array}{l}
x=0 \Rightarrow g(0)=3 f(0)-f^{\prime}(0)^{2}=3 \cdot 1-(-1)^{2}=2 \\
x=15 \Rightarrow g(15)=3 f(15)-f^{\prime}(15)^{2}=3 \cdot(-1)-(-2)^{2}=-7
\end{array}
\end{aligned}
$$

Abs max and min of $g$ on $[0,15]$ are 12 and -7 .
b. Show that there is a point $c$ in the interval $(0,15)$ such that $f^{\prime \prime}(c)=-1 / 2$.
$f$ is thice-differentiable $\Rightarrow f^{\prime}$ is differentiable and contimous everywhere. $x=11$ is a critical point of $f$ and $f^{\prime}$ is defined at $x=11 \Rightarrow f^{\prime}(11)=0$.

Applying MVT to $f^{\prime}$ on $[11,15]$, we conclude that there is a point $c$ in $(11,15)$ such that:

$$
f^{\prime \prime}(c)=\frac{f^{\prime}(15)-f^{\prime}(11)}{15-11}=\frac{-2-0}{4}=-\frac{1}{2}
$$

Ba. The slope of the tangent line at each point $(x, y)$ on the graph of a differentiable function $y=f(x)$ is proportional to $x^{2}-5$. If $f(1)=1$ and $f(3)=3$, find $f(2)$.

$$
f^{\prime}(x)=k \cdot\left(x^{2}-5\right) \text { for some constant } k
$$

$$
\Gamma f(x)=\int f^{\prime}(x) d x=k \cdot \int\left(x^{2}-5\right) d x=k \cdot\left(\frac{x^{3}}{3}-5 x\right)+C
$$



$$
\Rightarrow\left\{\begin{array}{l}
1=f(1)=k \cdot\left(\frac{1}{3}-5\right)+C_{1}=-\frac{14}{3} k+C_{1} \\
3=f(3)=k \cdot(9-15)+C_{c}=-6 k+C_{1}
\end{array}\right\} \Rightarrow-2=\frac{4}{3} k \Rightarrow k=-\frac{3}{2}
$$

$$
f(x)=-\frac{3}{2} \cdot\left(\frac{1}{3} x^{3}-5 x\right)-6 \Rightarrow f(2)=-\frac{3}{2} \cdot\left(\frac{8}{3}-10\right)-6=5
$$

Bb. Suppose that a continuous function $g$ satisfies:

$$
\int_{0}^{3} g(x) d x=7 \quad \text { and } \quad \int_{0}^{6} g(2 x) d x=5
$$

Find $\int_{1}^{2} x g\left(3 x^{2}\right) d x$.

$$
\begin{aligned}
5=\int_{0}^{6} g(2 x) d x= & \int_{0}^{12} g(u) \cdot \frac{1}{2} d u \\
d u=2 d x & \Rightarrow \int_{0}^{12} g(u) d u=10 \\
\int_{1}^{2} x g\left(3 x^{2}\right) d x=\frac{1}{\pi} \int_{0}^{12} g(u) \cdot \frac{1}{6} d u & =\frac{1}{6}\left(\int_{0}^{12} g(u) d u-\int_{0}^{1} g(u) d u\right) \\
d u & =6 x d x
\end{aligned}
$$

4. Evaluate the following integrals.
a. $\int_{0}^{\pi / 4} \frac{\sec ^{2} x}{(2 \tan x+1)^{2}} d x=\int_{1}^{3} \frac{1}{u^{2}} \cdot \frac{1}{2} d u=\left[-\frac{1}{2 u}\right]_{1}^{3}=-\frac{1}{6}+\frac{1}{2}=\frac{1}{3}$

$$
\begin{aligned}
u & =2 \tan x+1 \\
d u & =2 \sec ^{2} x d x
\end{aligned}
$$

b. $\int_{0}^{\pi / 4} \frac{\sin x}{(2 \sin x+\cos x)^{3}} d x=\int_{0}^{\pi / 4} \frac{\tan x \cdot \sec ^{2} x}{(2 \tan x+1)^{3}} d x \underset{\pi}{1} \frac{(u-1) / 2}{u^{3}} \cdot \frac{1}{2} d u$
$\begin{aligned} & u=2 \tan x+1 \\ & d u=2 \sec ^{2} x d x\end{aligned}$

$$
=\frac{1}{4} \int_{1}^{3}\left(u^{-2}-u^{-3}\right) d u=\frac{1}{4}\left[\frac{u^{-1}}{-1}-\frac{u^{-2}}{-2}\right]_{1}^{3}=\frac{1}{4}\left(-\frac{1}{3}+\frac{1}{18}+1-\frac{1}{2}\right)=\frac{1}{18}
$$

