Quiz \# 02
Math 101-Section 12 Calculus I
11 October 2020 Sunday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Write an equation for the tangent line to the curve $y=\sin \left(\tan \left(\frac{x^{3}-1}{x^{2}+1}\right)\right)$ at $x=1$.
Solution: We first calculate y^{\prime} using the chain rule:

$$
y^{\prime}=\cos \left(\tan \left(\frac{x^{3}-1}{x^{2}+1}\right)\right) \cdot \sec ^{2}\left(\frac{x^{3}-1}{x^{2}+1}\right) \cdot \frac{\left(3 x^{2}\right)\left(x^{2}+1\right)-\left(x^{3}-1\right)(2 x)}{\left(x^{2}+1\right)^{2}}
$$

We now put $x=1$ and find $y^{\prime}(1)=3 / 2$.
Next put $x=1$ in the expression of y to find $y(1)=0$.
Hence an equation of the tangent line to this curve at the point $(1,0)$ is

$$
y=\frac{3}{2}(x-1) .
$$

Here is a graph of the function with its tangent at $(1,0)$ for your information, not required as part of this quiz.

