Bilkent University
Quiz \# 03
Math 101-Section 12 Calculus I
18 October 2020 Sunday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) The height, width and the length of a rectangular solid, given as functions of time are $x(t), y(t)$ and $z(t)$. At a certain time $t=t_{0}$ we observe that

$$
\begin{aligned}
x\left(t_{0}\right) & =4 \mathrm{~cm}, & y\left(t_{0}\right) & =3 \mathrm{~cm}, \\
x^{\prime}\left(t_{0}\right) & =1 \mathrm{~cm} / \mathrm{sec}, & y^{\prime}\left(t_{0}\right) & =-2 \mathrm{~cm} / \mathrm{sec},
\end{aligned}
$$

(a) How fast is the volume of this solid changing at $t=t_{0}$?
(b) How fast is the surface area of this solid changing at $t=t_{0}$?

Solution:

(a) Volume is $V(t)=x(t) y(t) z(t)$. Then we have at $t=t$

$$
\begin{aligned}
V^{\prime}(t) & =x^{\prime}\left(t_{0}\right) y\left(t_{0}\right) z\left(t_{0}\right)+x\left(t_{0}\right) y^{\prime}\left(t_{0}\right) z\left(t_{0}\right)+x\left(t_{0}\right) y\left(t_{0}\right) z^{\prime}\left(t_{0}\right) \\
& =(1)(3)(2)+(4)(-2)(2)+(4)(3)(1) \\
& =2
\end{aligned}
$$

At that time the volume is increasing at a rate of $2 \mathrm{~m}^{2} / \mathrm{sec}$.
(b) The surface area of the solid is $S(t)=2(x(t) y(t)+x(t) z(t)+y(t) z(t))$. Then we have at $t=t_{0}$

$$
\begin{aligned}
S^{\prime}\left(t_{0}\right) & =2\left(x^{\prime}\left(t_{0}\right) y\left(t_{0}\right)+x\left(t_{0}\right) y^{\prime}\left(t_{0}\right)+x^{\prime}\left(t_{0}\right) z\left(t_{0}\right)+x\left(t_{0}\right) z^{\prime}\left(t_{0}\right)+y^{\prime}\left(t_{0}\right) z\left(t_{0}\right)+y\left(t_{0}\right) z^{\prime}\left(t_{0}\right)\right) \\
& =2((1)(3)+(4)(-2)+(1)(2)+(4)(1)+(-2)(2)+(3)(1)) \\
& =0
\end{aligned}
$$

At that time the surface area of the solid is not changing.

