Bilkent University
Quiz \# 04
Math 101-Section 12 Calculus I
1 November 2020 Sunday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Consider the polynomial $f(x)=4 x^{5}-15 x^{4}+20 x^{3}-30 x^{2}+40 x-10$.
(i) Use the Intermediate Value Theorem (IVT) to show that $f(x)=0$ has at least three solutions.
(ii) Use Rolle's theorem to show that $f(x)=0$ has exactly three solutions.

Hint: $f^{\prime}(x)$ can be easily factored.
Solution: (i) We try some values for x :

$$
f(0)=-10, f(1)=9, f(2)=-2, f(3)=137 .
$$

There are three sign changes. f is continuous. Therefore there are at least three real roots of f on the interval $(0,3)$.
(ii) By Rolle's theorem, between any two roots of f, there is a root of f^{\prime}. If f has more than three roots, then f^{\prime} will have more than two roots. But

$$
f^{\prime}(x)=20 x^{4}-60 x^{3}+60 x^{2}-60 x+40,
$$

and by trial and error we find that

$$
f(1)=0, f(2)=0 \text {. }
$$

This means $(x-1)(x-2)$ divides f. Hence we find that

$$
f^{\prime}(x)=20(x-1)(x-2)\left(x^{2}+1\right)
$$

which has only two real roots. Hence f cannot have more than three roots.
Here is the graph of $y=f(x)$ for your information. This was not required in this quiz.

