Bilkent University

Quiz \# 06
Math 101-Section 12 Calculus I
22 November 2020 Sunday
Instructor: Ali Sinan Sertöz

Solution Key

For this problem you need to use a computer algebra software. If none is installed on your computer, use https://www.wolframalpha.com/

You may also want to take a look at

```
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Variable_limits_form
```

Q-1) Let

$$
f(x)=\int_{x^{3}}^{x^{2}} \sqrt{1+t^{4}} d t, \quad \text { for } x \in[0,1] .
$$

Clearly $f(x) \geq 0$ and $f(0)=f(1)=0$. Find the maximum value of $f(x)$ on $[0,1]$.

Solution:

Recall the Leibniz rule:

$$
\frac{d}{d x} \int_{h(x)}^{g(x)} F(t) d t=F(g(x)) g^{\prime}(x)-F(h(x)) h^{\prime}(x)
$$

Thus we have

$$
f^{\prime}(x)=\sqrt{1+x^{8}} 2 x-\sqrt{1+x^{12}} 3 x^{2} .
$$

Here $x=0$ is a solution but it is an end point. Cancelling out x and equating $f^{\prime}(x)$ to zero we get

$$
2 \sqrt{1+x^{8}}=3 x \sqrt{1+x^{12}} .
$$

Squaring both sides we get

$$
4+4 x^{8}=9 x^{2}+9 x^{14}
$$

There is only one root of this on $[0,1]$, which is $x_{0}=0.6782 \ldots$. Since the end points will not contribute to the maximum value, this critical point gives the maximum value of f as

$$
f_{\max }=f\left(x_{0}\right)=0.1497 \ldots
$$

Here is the graph of $y=f(x)$, not reqired as part of this quiz.

