Bilkent University

Quiz \# 07
Math 101-Section 12 Calculus I
29 November 2020 Sunday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Calculate $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{n+k}{n \sqrt{3 n^{2}+8 n k+4 k^{2}}}$.

Solution:

We interpret this as the limit of a Riemann sum of some function $f(x)$.
Since we have $n+k$, we first think of converting this to $1+\frac{k}{n}$. This then suggest that the integral starts from $x=1$ when $k=0$, to $x=2$ when $k=n$.

Now we try to write the given expression in terms of $1+\frac{k}{n}$. But first we take out $\frac{1}{n}$ since it is going to be the common length of each subinterval.

We thus have

$$
\frac{n+k}{n \sqrt{3 n^{2}+8 n k+4 k^{2}}}=\frac{1}{n} \frac{\left(1+\frac{k}{n}\right)}{\sqrt{4\left(1+\frac{k}{n}\right)^{2}-1}}=\frac{1}{n} f\left(\left(1+\frac{k}{n}\right)\right),
$$

where

$$
f(x)=\frac{x}{\sqrt{4 x^{2}-1}} .
$$

Thus we have
$\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{n+k}{n \sqrt{3 n^{2}+8 n k+4 k^{2}}}=\int_{1}^{2} \frac{x}{\sqrt{4 x^{2}-1}} d x=\left(\left.\frac{1}{4} \sqrt{4 x^{2}-1}\right|_{1} ^{2}\right)=\frac{1}{4}(\sqrt{15}-\sqrt{3}) \approx 0.5352 \ldots$

