Bilkent University

Quiz \# 08
Math 101-Section 12 Calculus I
6 December 2020 Sunday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Calculate the area enclosed by the curves $f(x)=x^{3}-5 x^{2}-x+5$ and $g(x)=x^{3}-4 x^{2}-5 x$ on the interval $[-4,8]$.

Solution:

We first notice that

$$
\begin{aligned}
f(x) & =x^{3}-5 x^{2}-x+5=(x-1)(x+1)(x-5) \\
g(x) & =x^{3}-4 x^{2}-5 x=x(x+1)(x-5)
\end{aligned}
$$

Therefore these curves intersect at $x=-1$ and $x=5$.
We check that:
On $[-4,-1)$, we have $g(x)-f(x)>0$, on $(-1,5)$, we have $f(x)-g(x)>0$, and on $(5,8]$, we have $g(x)-f(x)>0$.

Therfore the area can be calculated as follows.

$$
\begin{aligned}
\text { Area } & =\int_{-4}^{-1}(g(x)-f(x)) d x+\int_{-1}^{5}(f(x)-g(x)) d x+\int_{5}^{8}(g(x)-f(x)) d x \\
& =\int_{-4}^{-1}\left(x^{2}-4 x-5\right) d x+\int_{-1}^{5}\left(-x^{2}+4 x+5\right) d x+\int_{5}^{8}\left(x^{2}-4 x-5\right) d x \\
& =\left(\frac{1}{3} x^{3}-2 x^{2}-\left.5 x\right|_{-4} ^{-1}\right)+\left(-\frac{1}{3} x^{3}+2 x^{2}+\left.5 x\right|_{-1} ^{5}\right)+\left(\frac{1}{3} x^{3}-2 x^{2}-\left.5 x\right|_{5} ^{8}\right) \\
& =36+36+36 \\
& =108
\end{aligned}
$$

Here is a sketch of the graphs of $y=f(x)$ and $y=g(x)$, not reqired as part of this quiz.

