Quiz \# 01
Math 101-Section 12 Calculus I
07 October 2021 Thursday
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) Let f be defined as

$$
f(x)= \begin{cases}x^{3}+x, & x \geq 0 \\ x^{2}-x, & x<0\end{cases}
$$

(i) Is f continuous at $x=0$
(ii) Is f differentiable at $x=0$?
(iii) Write an equation for the tangent line to the curve $y=f(x)$ at $x=1$.
(iv) Write an equation for the tangent line to the curve $y=f(x)$ at $x=-\frac{1}{2}$.

Show your work in detail. Correct answers without detailed explanation do not get any credit. Grading: (i) 2 points, (ii) 2 points, (iii) 3 points, (iv) 3 points.

Solutions:

(i)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =\lim _{x \rightarrow 0^{-}}\left(x^{2}-x\right)=0 \\
\lim _{x \rightarrow 0^{+}} f(x) & =\lim _{x \rightarrow 0^{+}}\left(x^{3}+x\right)=0 \\
f(0) & =0
\end{aligned}
$$

The left and right limits of f at $x=0$ agree and both are equal to $f(0)$, therefore f is continuous at $x=0$.
(ii)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x} & =\lim _{x \rightarrow 0^{-}} \frac{x^{2}-x}{x}=\lim _{x \rightarrow 0^{-}}(x-1)=-1 \\
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x} & =\lim _{x \rightarrow 0^{+}} \frac{x^{3}+x}{x}=\lim _{x \rightarrow 0^{+}}\left(x^{2}+1\right)=1 .
\end{aligned}
$$

The left and right limits of the Newton quotient do not agree, so

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x} \quad \text { does not exist. }
$$

Hence f is not differentiable at $x=0$.
(iii) $f(1)=2, f^{\prime}(1)=3 x^{2}+\left.1\right|_{x=1}=4$. Hence an equation of the tangent line is

$$
y-2=4(x-1)
$$

(iv) $f(-1 / 2)=-3 / 4, f^{\prime}(-1 / 2)=2 x-\left.1\right|_{x=-\frac{1}{2}}=-2$. Hence an equation of the tangent line is

$$
y+\frac{3}{4}=-2\left(x+\frac{1}{2} 1\right) .
$$

