Quiz \# 02
Math 101-Section 12 Calculus I
14 October 2021 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let f and g be two functions defined as

$$
f(x)=1+x+x^{2}+3 x^{3}, \text { and } g(x)=\sin \left(\frac{\pi}{4} x\right)
$$

(i) Find $f^{\prime}(x)$ and $g^{\prime}(x)$.
(ii) Calculate $(f \circ g)^{\prime}(1)$.
(iii) Calculate $(f \circ f)^{\prime}(0)$.
(iv) Calculate $(g \circ f)^{\prime}(2)$.
(v) Calculate $(g \circ g)^{\prime}(4)$.

Show your work. Simplify as much as possible.
Grading: 2 points each

Solutions:

(i) $f^{\prime}(x)=1+2 x+9 x^{2}$ and $g^{\prime}(x)=\frac{\pi}{4} \cos \frac{\pi}{4} x$.
(ii) $(f \circ g)^{\prime}(1)=f^{\prime}(g(1)) g^{\prime}(1)=f^{\prime}\left(\frac{\sqrt{2}}{2}\right) g^{\prime}(1)=\left[\frac{11}{2}+\sqrt{2}\right]\left[\frac{\sqrt{2} \pi}{8}\right]=\frac{\sqrt{2} \pi}{16}(11+2 \sqrt{2})$.
(iii) $(f \circ f)^{\prime}(0)=f^{\prime}(f(0)) f^{\prime}(0)=f^{\prime}(1) f^{\prime}(0)=[12][1]=12$.
(iv) $(g \circ f)^{\prime}(2)=g^{\prime}(f(2)) f^{\prime}(2)=g^{\prime}(31) f^{\prime}(2)=\left[\frac{\sqrt{2} \pi}{8}\right][41]=\frac{41 \sqrt{2} \pi}{8}$.
(v) $(g \circ g)^{\prime}(4)=g^{\prime}(g(4)) g^{\prime}(4)=g^{\prime}(0) g^{\prime}(4)=\left[\frac{\pi}{4}\right]\left[-\frac{\pi}{4}\right]=-\frac{\pi^{2}}{16}$.

