

Quiz # 03 Math 101-Section 12 Calculus I 21 October 2021 Thursday Instructor: Ali Sinan Sertöz Solution Key

Q-1) Consider the hyperbola $x^2 - y^2 = 9$. Observe that the point $p_0 = (5, -4)$ is on this hyperbola.

- (i) Find y' at (5, -4).
- (ii) Find y'' at (5, -4).
- (iii) Write an equation of the form ax + by = c for the tangent line at p_0 for this hyperplane.
- (iv) Find the area of the triangle bounded by the above tangent line, the x-axis and the y-axis.

Show your work. Simplify as much as possible.

Grading: (i) 3 points, (ii) 3 points, (iii) 1 point, (iv) 3 points.

Solutions:

(i) From $x^2 - y^2 = 9$, by implicitly differentiating with respect to x we find 2x - 2yy' = 0. This gives $y' = \frac{x}{y}$. Hence at p_0 we get $y' = -\frac{5}{4}$.

(ii) This time from 2x - 2yy' = 0 again by implicit differentiation with respect to x we get 2 - 2y'y' - 2yy'' = 0. Putting in $(x, y, y') = (5, -4, -\frac{5}{4})$ we get $y'' = \frac{9}{64}$.

(iii) An equation of this tangent line is $y + 4 = -\frac{5}{4}(x - 5)$ which simplifies to 5x + 4y = 9.

(iv) From 5x + 4y = 9 we find that the x and y intercepts are $(\frac{9}{5}, 0)$ and $(0, \frac{9}{4})$. Hence the area is $A = \frac{1}{2} \frac{9}{4} \frac{9}{5} = \frac{81}{40}$.