Bilkent University
Quiz \# 04
Math 101-Section 12 Calculus I
4 November 2021 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $f(x)=2 x^{3}-3 x^{2}-12 x+1$ where $-2 \leq x \leq 1$. Find the minimum and maximum values of f. The Mean Value Theorem guarantees that there is a point $a \in(-2,1)$ such that the slope of the tangent line to the curve $y=f(x)$ at $x=a$ is equal to the slope of the line joining the points $(-2, f(-2))$ and $(1, f(1))$. Find such an a.
Show your work. Simplify as much as possible.

Solutions:

We start by taking the derivative of f.

$$
f^{\prime}(x)=6 x^{2}-6 x-12=6(x+1)(x-2)=0 \text { when } x=-1 \text { or } x=2 .
$$

We observe that only $x=-1$ is in our domain. We then evaluate f at the end points and at the only critical point in the domain.

$$
f(-2)=-3, \quad f(-1)=8, \quad f(1)=-12
$$

By looking at these values we see that the minimum value of f is -12 , and the maximum value is 8 on this interval.

The slope of the line joining the points $(-2, f(-2))=(-2,-3)$ and $(1, f(1))=(1,-12)$ is

$$
\frac{(-3)-(-12)}{(-2)-(1)}=-3
$$

We are looking for a point a such that $f^{\prime}(a)=-3$ and $-2<a<1$.
Solving for $f^{\prime}(x)=-3$ we find two solutions

$$
a=\frac{1}{2}(1-\sqrt{7}) \approx-0.82 \text { and } b=\frac{1}{2}(1+\sqrt{7}) \approx 1.82
$$

The one which is in our interval is a. Here is a relevant graph:

