Quiz \# 05
Math 101-Section 12 Calculus I
11 November 2021 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $f(x)=x^{4}-2 x^{3}-12 x^{2}$ where $-4 \leq x \leq 6$.
(a) Find the x-intercepts of $f(x)$.
(b) Find the critical points of $f(x)$.
(c) Find the inflection points of $f(x)$.
(d) Plot $y=f(x)$ where $-4 \leq x \leq 6$.
(e) By looking at your graph find the points where f takes its minimum and maximum values.

Show your work. Simplify as much as possible.
Grading: 2 points each

Solutions:

(a) $f(x)=x^{4}-2 x^{3}-12 x^{2}=x^{2}\left(x^{2}-2 x-12\right)=0$ gives

$$
x=0, x=1+\sqrt{13} \approx 4.6, x=1-\sqrt{13} \approx-2.6
$$

(b) $f^{\prime}(x)=4 x^{3}-6 x^{2}-24 x=2 x\left(2 x^{2}-3 x-12\right)=0$ gives

$$
x=0, x=\frac{3+\sqrt{105}}{4} \approx 3.3, x=\frac{3-\sqrt{105}}{4} \approx-1.8
$$

(c) $f^{\prime \prime}(x)=12 x^{2}-12 x-24=12\left(x^{2}-x-2\right)=12(x+1)(x-2)$ gives

$$
x=-1, x=2 .
$$

Since $f^{\prime \prime}(x)$ changes sign at each of these roots, both are inflection points.
(d) Here is a graph of $y=f(x)$ when $-4 \leq x \leq 6$.

(e) By looking at the graph we see that the minimum of f occurs at the critical point $x=1+\sqrt{13}$, and the maximum occurs at the end point $x=6$.

