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Q-1) Evaluate the limit

lim
n→∞

1

n8

n∑
i=1

(i7 + i5n2 + i3n4),

by interpreting the sum as a Riemann sum.

Show your work. Simplify as much as possible.

Solutions:

The general term of the summation can be written as
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+
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+
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]
.

Now consider the function

f(x) = x7 + x5 + x3,where x ∈ [0, 1].

Divide the interval [0, 1] into n equal subintervals, and on each subinterval choose the right end point.
Then we have for this partition and sampling

∆x =
1

n
, x∗i =

i

n
, i = 1, . . . , n,

and the above summation becomes the Riemann sum of f(x) for this particular partition and sampling.
Since f is continuous, the Riemann sum converges to the integral of the function f on [0, 1].
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