Bilkent University
Quiz \# 07
Math 101-Section 12 Calculus I
25 November 2021 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Evaluate the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{8}} \sum_{i=1}^{n}\left(i^{7}+i^{5} n^{2}+i^{3} n^{4}\right)
$$

by interpreting the sum as a Riemann sum.
Show your work. Simplify as much as possible.

Solutions:

The general term of the summation can be written as

$$
\frac{1}{n^{8}}\left(i^{7}+i^{5} n^{2}+i^{3} n^{4}\right)=\frac{1}{n}\left[\left(\frac{i}{n}\right)^{7}+\left(\frac{i}{n}\right)^{5}+\left(\frac{i}{n}\right)^{3}\right]
$$

Now consider the function

$$
f(x)=x^{7}+x^{5}+x^{3}, \text { where } x \in[0,1] .
$$

Divide the interval $[0,1]$ into n equal subintervals, and on each subinterval choose the right end point. Then we have for this partition and sampling

$$
\Delta x=\frac{1}{n}, x_{i}^{*}=\frac{i}{n}, i=1, \ldots, n
$$

and the above summation becomes the Riemann sum of $f(x)$ for this particular partition and sampling. Since f is continuous, the Riemann sum converges to the integral of the function f on $[0,1]$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n^{8}} \sum_{i=1}^{n}\left(i^{7}+i^{5} n^{2}+i^{3} n^{4}\right) & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(\frac{i}{n}\right)^{7}+\left(\frac{i}{n}\right)^{5}+\left(\frac{i}{n}\right)^{3}\right] \frac{1}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \\
& =\int_{0}^{1} f(x) d x \\
& =\int_{0}^{1}\left(x^{7}+x^{5}+x^{3}\right) d x \\
& =\left(\frac{x^{8}}{8}+\frac{x^{6}}{6}+\left.\frac{x^{4}}{4}\right|_{0} ^{1}\right) \\
& =\frac{1}{8}+\frac{1}{6}+\frac{1}{4} \\
& =\frac{13}{24}
\end{aligned}
$$

