Bilkent University
Quiz \# 01
Math 101-Section 08 Calculus I
07 October 2022 Friday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let f be defined as

$$
f(x)= \begin{cases}4 x^{2}+x+7, & x<3 \\ A x+B, & x \geq 3\end{cases}
$$

Assuming that f is differentiable everywhere, find A and B.
Show your work in detail. Correct answers without detailed explanation do not get any credit. Grading: 10 points.

Solution: Since f is differentiable then it must be continuous in particular at $x=3$. This means that the limit of f as x approaches to 3 exists and is $f(3)$. Since this limit exists, the left limit also exists and is equal to the limit itself. This gives

$$
f(3)=\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(4 x^{2}+x+7\right)=46 .
$$

Since we have $f(3)=3 A+B$, the first identity we get is

$$
3 A+B=46 .
$$

Since f is differentiable at $x=3$, the right and left derivatives should exist and be equal. We then have

$$
f_{-}^{\prime}(3)=\lim _{x \rightarrow 3^{-}} \frac{f(x)-f(3)}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{4 x^{2}+x+7-46}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x-3)(4 x+13)}{x-3}=25 .
$$

Also

$$
f_{+}^{\prime}(3)=\lim _{x \rightarrow 3^{+}} \frac{f(x)-f(3)}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{A x+B-(3 A+B)}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{A(x-3)}{x-3}=A .
$$

Thus our second equation is

$$
A=25 .
$$

Putting this into our first equation we find

$$
B=-29
$$

