Quiz \# 02
Math 101-Section 08 Calculus I
14 October 2022 Friday
Instructor: Ali Sinan Sertöz
Bilkent University

Solution Key

Q-1) Let f and g be defined as

$$
f(x)=x^{4}+x^{3}-x^{2}-x+5, \quad g(x)=x^{5}+x+1 .
$$

Calculate the following values using chain rule and clearly indicating each step.
(a) $(f \circ g)^{\prime}(-1)$
(b) $(g \circ f)^{\prime}(1)$.
(c) $(f \circ f)^{\prime}(0)$.
(d) $(g \circ g)^{\prime}(1)$.
(e) Assuming that h is differentiable everywhere write $(h \circ h \circ h)^{\prime}\left(x_{0}\right)$ in terms of h and h^{\prime}.
(f) Assuming that h and k are differentiable everywhere, write $(h \circ k)^{\prime \prime}(x)$ in terms of h, k and their derivatives.

Show your work in detail. Correct answers without detailed explanation do not get any credit. Grading: $1+1+1+1+3+3=10$ points.

Solution: We first calculate some values of f, g, f^{\prime} and g^{\prime}.

$$
\begin{array}{rlrlrl}
f(0) & =5 & f(1) & =5 & g(1) & =3 \\
f^{\prime}(3) & =128 & f^{\prime}(0) & =-1 & f^{\prime}(1) & =4 \\
g^{\prime}(1) & =6 & g^{\prime}(-1) & =6 & g^{\prime}(5) & =3126
\end{array}
$$

(a) $(f \circ g)^{\prime}(-1)=f^{\prime}(g(-1)) g^{\prime}(-1)=f^{\prime}(-1) g^{\prime}(-1)=0 \cdot 6=0$.
(b) $(g \circ f)^{\prime}(1)=g^{\prime}(f(1)) f^{\prime}(1)=g^{\prime}(5) f^{\prime}(1)=3126 \cdot 4=12504$.
(c) $(f \circ f)^{\prime}(0)=f^{\prime}(f(0)) f^{\prime}(0)=f^{\prime}(5) f^{\prime}(0)=564 \cdot(-1)=-564$.
(d) $(g \circ g)^{\prime}(1)=g^{\prime}(g(1)) g^{\prime}(1)=g^{\prime}(3) g^{\prime}(1)=406 \cdot 6=2436$.
(e) $(h \circ h \circ h)^{\prime}(x)=h^{\prime}(h(h(x))) h^{\prime}(h(x)) h^{\prime}(x)$.
(f)

$$
\begin{aligned}
(h \circ k)^{\prime}(x) & =h^{\prime}(k(x)) k^{\prime}(x)=\left(h^{\prime} \circ k\right)(x) k^{\prime}(x) \\
(h \circ k)^{\prime \prime}(x) & =h^{\prime \prime}(k(x)) k^{\prime}(x) k^{\prime}(x)+\left(h^{\prime} \circ k\right)(x) k^{\prime \prime}(x) \\
& =h^{\prime \prime}(k(x))\left(k^{\prime}(x)\right)^{2}+h^{\prime}(k(x)) k^{\prime \prime}(x)
\end{aligned}
$$

